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This Supplementary information provides details of model equations and additional sim-
ulations supporting the results discussed in the main text.

The model includes several compartments to represent the patient population in a hospital
ward, including susceptible individuals under antibiotic treatment (S+) and without exposure
to antibiotic treatment (S−); colonized patients who mount immune responses (C+), colonized
patients without immune responses (C−); patients with symptoms of C. Difficile infection
(I); diagnosed colonized patients from screening with immune response (C+

T ) and without
immune responses (C−

T ). The schematic model diagram for the transitions between these
classes of individuals are shown in Figure 1 of the main text. For the rapid laboratory testing,
the model can be expressed as the following system of differential equations.

dS+

dt
= (1 − δ)αbsrN − S+(Λ + ΛT) + τ−S− − τ+S+ − µS+

dS−
dt

= (1 − δ)(1 − α)bsrN − ψS−(Λ + ΛT) + γ
(
C+ + qC−

T + C+
T
)

+ τ+S+ − τ−S− − µS−

dC+

dt
= (1 − δ)(1 − θ)(1 − bs)ηrN + f

(
S+ + ψS−

)(
Λ + (1 − σ)ΛT

)
− γC+ − µC+

dC−

dt
= (1 − δ)(1 − θ)(1 − bs)(1 − η)rN + (1 − f )

(
S+ + ψS−

)(
Λ + (1 − σ)ΛT

)



+ (1 − q)γC−
T − εC− − µC−

dC+
T

dt
= (1 − δ)(1 − bs)ηθrN + σ f [S+ + ψS−]ΛT

− γC+
T − µC+

T

dC−
T

dt
= (1 − δ)(1 − bs)(1 − η)θrN + σ(1 − f )[S+ + ψS−]ΛT

+ ρI − γC−
T − µC−

T
dI
dt

= δrN + εC− − ρI − µI I

where

Λ = β(κνC+ + κC−)

ΛT = β(1 − ξ)(κνC+
T + κC−

T + I)

N = S+ + S− + C+ + C− + C+
T + C−

T + I

When considering laboratory testing with time-delay, we included two compartments of
D+ and D− to account for time-interval between sample collection and the release of labora-
tory results for colonized patients with and without immune responses, respectively. During
this time-interval, patients are neither isolated nor treated for CDI, and therefore the possibil-
ity of in-ward transmission exists. In this case, the model can be expressed as

dS+

dt
= (1 − δ)αbsrN − S+(Λ + ΛT) + τ−S− − τ+S+ − µS+

dS−
dt

= (1 − δ)(1 − α)bsrN − ψS−(Λ + ΛT) + γ
(
C+ + qC−

T + C+
T
)

+ τ+S+ − τ−S− − µS−

dC+

dt
= (1 − δ)(1 − θ)(1 − bs)ηrN + f

(
S+ + ψS−

)(
Λ + (1 − σ)ΛT

)
− γC+ − µC+

dC−

dt
= (1 − δ)(1 − θ)(1 − bs)(1 − η)rN + (1 − f )

(
S+ + ψS−

)(
Λ + (1 − σ)ΛT

)
+ (1 − q)γC−

T − εC− − µC−

dD+

dt
= (1 − δ)(1 − bs)ηθrN + σ f [S+ + ψS−]ΛT − πD+

dD−

dt
= (1 − δ)(1 − bs)(1 − η)θrN + σ(1 − f )[S+ + ψS−]ΛT − πD−

dC+
T

dt
= πD+ − γC+

T − µC+
T
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dC−
T

dt
= πD− + ρI − γC−

T − µC−
T

dI
dt

= δrN + εC− − ρI − µI I

where

Λ = β
[
κν(D+ + C+) + κ(D− + C−)

]
ΛT = β(1 − ξ)(κνC+

T + κC−
T + I)

N = S+ + S− + C+ + C− + D+ + D− + C+
T + C−

T + I

Screening is implemented at the time of hospital admission (Figure S1) or for in-hospital
patients with exposure to C. difficile. Parameters of the model are described in Table 1 of the
main text.
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Figure S1: Schematic diagram for screening of patients at the time hospital admission.
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Basic reproduction number

To calculate the basic reproduction number, we applied the next generation method (van den
Driessche and Watmough, 2002), by representing F and V as the matrices for new infections
and transitions in the infection subclasses

F =

 f (Λ + βI)S+ + ψ f (Λ + βI)S−
(1 − f )(Λ + βI)S+ + ψ(1 − f )(Λ + βI)S−

0

 (1)

and

V =

 −(1 − bs)ηrN + γC+ + µC+

−(1 − bs)(1 − η)rN + εC− + µC−

−εC− + ρI + µI I

 (2)

Taking the Jacobian of F and V at the infection-free equilibrium, we obtain

JF =


f βκν(ψS∗

− + S∗
+) f βκ(ψS∗

− + S∗
+)

f βrbsN
µ

(1 − f )βκν(ψS∗
− + S∗

+) (1 − f )βκ(ψS∗
− + S∗

+)
(1 − f )βrbsN

µ

0 0 0

 (3)

and

JV =

γ + µ 0 0
0 µ + ε 0
0 −ε ρ + µI

 (4)

where, at the infection-free equilibrium,

S∗
+ =

rbsN(αµ + τ−)

µ(µ + τ+ + τ−)

S∗
− =

rbsN[(1 − α)µ + τ+]

µ(µ + τ+ + τ−)

(5)

According to the next generation method, the reproduction number is given by the spectral
radius (dominant eigenvalue) of JF J−1

V . This gives

R0 =
f κνβrbsN

γ + µ

(ψ(−αµ + τ+ + µ) + αµ + τ−

µ(µ + τ+ + τ−)

)
+

(1 − f )κβrbsN
µ + ε

(ψ(−αµ + τ+ + µ) + αµ + τ−

µ(µ + τ+ + τ−)

)
+

(1 − f )εβrbsN
µ(µ + ε)(ρ + µI)

(6)

We used this expression to calculate the transmission rate of C. difficile for a given R0,
fixing all other parameter values. We note that in the absence of interventions, the model
with time-delay reduces to the model without time-delay, and therefore has the same R0.
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Prevalence of CDI for R0 = 1.07

Figure S2 shows the prevalence of C. difficile for the scenarios described in the main text.
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Figure S2: Prevalence of C. difficile with R0 = 1.07 over 200 days for the model with rapid
laboratory testing (A,B) and the model with a time-delay in laboratory testing (C,D). The black
curve is the average of stochastic realizations with screening 92.5% of patients at the time of
hospital admission. Screening 90% of in-hospital patients with exposure to CDI started on
day 100. The effectiveness of patient isolation in preventing disease transmission in hospital
is 90% (A,C), and 80% (B,D).
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Figure S3: Prevalence of C. difficile in the model with rapid laboratory testing, with R0 = 2.6
over 200 days without screening (A-C) and with screening (D-F) 92.5% of patients at the time
of hospital admission. Curves represent the prevalence of undiagnosed colonized patients
(black), and isolated patients (grey). The total prevalence is the sum of black and grey curves.
Effectiveness of isolation for CDI patients was 100% (A,D), 90% (B,E), and 80% (C,F).

Simulation results for R0 = 2.6

Model with rapid laboratory testing

For the mean value of R0 = 2.6, Figure S3 shows the prevalence of C. difficile for three scenarios
in which the effectiveness of patient isolation in preventing in-ward transmission is 100%
(Figure S3A,D), 90% (Figure S3B,E), and 80% (Figure S3C,F). In these simulations, the baseline
scenario without screening (θ = 0) was compared with the scenario of 92.5% screening at the
time of hospital admission. When the effectiveness of patient isolation is 100%, the prevalence
of C. difficile reduces from 18 cases without screening to 13.4 cases (on average) with 92.5%
screening of patients at the time of hospital admission. This corresponds to approximately
25.8% (95% CI: 25.6% – 25.9%) reduction of prevalence 50 days after the start of screening.
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Figure S4: Prevalence of C. difficile in the model with a time-delay in laboratory testing, with
R0 = 2.6 over 200 days without screening (A-C) and with screening (D-F) 92.5% of patients
at the time of hospital admission. Curves represent the prevalence of undiagnosed colonized
patients (black), and isolated patients (grey). The total prevalence is the sum of black and
grey curves. Effectiveness of isolation for CDI patients was 100% (A,D), 90% (B,E), and 80%
(C,F).

For imperfect isolation with less than 100%, the reduction of prevalence is about 6.5% (95%
CI: 6.3% – 6.6%) and 3.6% (95% CI: 3.5% – 3.7%) for 90% and 80% effectiveness of patient
isolation, respectively.

Model with a time-delay in laboratory testing

Compared with the results for rapid testing, Figure S4 shows a significantly lower effect of
patient screening on reducing the prevalence of CDI when an average of 2 days is considered
for the time-delay between sample collection and the release of laboratory results. Regardless
of the effectiveness of patient isolation, we observed that the reduction of CDI prevalence
remains below 1% with screening of patients at the time of hospital admission.
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Figure S5: Percentage reduction in the number of new C. difficile infection (incidence) with
R0 = 2.6 over 200 days for the model with rapid laboratory testing (A,B) and the model
with a time-delay in laboratory testing (C,D). In panels (A) and (C), curves represent the
reduction achieved with screening 92.5% of patients at the time of hospital admission, where
the effectiveness of patient isolation in preventing in-ward transmission is: 100% (black); 90%
(red); and 80% (grey). In panels (C) and (D), curves represent the reduction achieved with
screening 92.5% of patients at the time of hospital admission, where the effectiveness of patient
isolation in preventing in-ward transmission is: 90% (red); and 80% (grey). Screening 90% of
in-hospital patients with exposure to CDI started on day 100 (shaded area).

Relative reduction of CDI incidence

Figure S5A (black curve) shows that when the effectiveness of patient isolation is 100% in
preventing in-ward transmission in the model with rapid laboratory testing, the daily inci-
dence of C. difficile is reduced by over 25.2% on average (95% CI: 24.6% – 25.8%) as a result of
92.5% screening at the time of hospital admission. With lower effectiveness of isolation, this
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reduction drops below 4% (Figure S5A, red and grey curves).
For the model with an average of 2 days between sample collection and the release of

laboratory results, the relative reduction of incidence is negligible (below 1%) regardless of
the effectiveness of patient isolation (Figure S5C).

We then implemented screening of inpatients with exposure of C. difficile in addition to
screening of patients at the time of admission. For the model with rapid laboratory testing,
Figure S5B shows the temporal percentage reduction of the CDI incidence, when screening
90% of in-hospital patients started on day 100. This resulted in an increasing trend in the
percentage reduction of C. difficile incidence over time (Figure S5B, red and grey curves),
reaching levels comparable to those achieved with screening patients only at the time of
hospital admission when the effectiveness of patient isolation was assumed to be 100% (Figure
S5A, black curve). However, simulating the model with a delay of 2 days in the release of
laboratory results indicate marginal benefits, achieving at most 3% increase in the relative
reduction of CDI incidence by inpatients screening (Figure S5D).

Sensitivity analysis and PRCC

We carried out a sensitivity analysis using the Latin Hypercube Sampling (LHS) technique
and calculated Partial Rank Correlation Coefficients (PRCCs) to investigate the effects of vari-
ation in parameter values on the model outcomes (Marino et al., 2008), and specifically on
the prevalence of C. difficile as the response variable. LHS is a stratified (near-random) sam-
pling technique without replacement. In this method, the random parameter distributions are
divided into a number of equal probability intervals, and are then sampled.

The goal of this analysis was to identify key parameters whose uncertainties contribute
to prediction imprecision, and to rank these parameters by their relative importance in con-
tributing to this imprecision. To allow for the simultaneous variations of the parameters,
samples of size 1000 were generated in which each parameter was treated as a random vari-
able and assigned a probability function. These parameters were sampled using LHS method
(near-random sampling) within their respective ranges. To calculate PRCCs, we assumed that
there is no correlation between the input parameters (Marino et al., 2008). The parameters
with large PRCC values (close to 1 or −1) and their corresponding p-values smaller than
the significance level (0.05) have the largest influence on the model outcomes (Taylor, 1990).
We examined scatter plots to verify the existence of monotonic relationships between the pa-
rameters used in the LHS sampling and the response variable (Figures S6–S9). The PRCC
values and their associated p-values are presented in Table S1 and S2 for reproduction num-
bers of R0 = 1.07 and R0 = 2.6, respectively. The relative influence of model parameters
with R0 = 1.07 is summarized in Table 1 of the main text. The relative influence of model
parameters with R0 = 2.6 is summarized in Table S3.
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Table S1: Parameter ranges used in the LHS analysis, partial rank correlation coefficients and
their associated p-values with reproduction number of 1.07.

parameter range
M1a M2b

PRCC p–value PRCC p–value

f 0.45–0.75 0.171 < 0.001 0.191 < 0.001
κ 0.3–0.7 0.366 < 0.001 0.436 < 0.001
ν 0.3–0.7 −0.876 < 0.001 −0.906 < 0.001
ψ 0.2–0.56 0.399 < 0.001 0.503 < 0.001
α 0.15–0.29 0.036 0.259 0.077 0.016
σ 0–1 −0.363 < 0.001 −0.134 < 0.001
θ 0–1 −0.712 < 0.001 −0.224 < 0.001
ε 0.14–0.26 −0.129 < 0.001 −0.002 0.945
τ+ 0.011–0.01 −0.007 0.823 −0.037 0.239
q 0.56–1 −0.467 < 0.001 −0.473 < 0.001
µI 0.001–0.01 0.029 0.353 −0.034 0.280
ρ 0.143–0.33 0.138 < 0.001 0.214 < 0.001
γ 0.143–0.33 −0.233 < 0.001 −0.215 < 0.001
ξ 0.8–1 −0.456 < 0.001 −0.631 < 0.001
bs 0.9–0.99 −0.802 < 0.001 −0.874 < 0.001
η 0.5–0.7 −0.138 < 0.001 −0.108 < 0.001
π 0.33–1 — — −0.423 < 0.001

a Model with rapid laboratory testing
b Model with a time-delay in laboratory testing
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Table S2: Parameter ranges used in the LHS analysis, partial rank correlation coefficients and
their associated p-values with reproduction number of 2.6.

parameter range
M1a M2b

PRCC p–value PRCC p–value

f 0.45–0.75 −0.420 < 0.001 −0.431 < 0.001
κ 0.3–0.7 0.483 < 0.001 0.358 < 0.001
ν 0.3–0.7 −0.910 < 0.001 −0.904 < 0.001
ψ 0.2–0.56 0.857 < 0.001 0.865 < 0.001
α 0.15–0.29 0.119 < 0.001 0.079 < 0.002
σ 0–1 −0.500 < 0.001 −0.037 0.235
θ 0–1 −0.286 < 0.001 −0.015 0.624
ε 0.14–0.26 0.073 < 0.020 0.114 < 0.001
τ+ 0.011–0.01 0.188 < 0.001 0.225 < 0.001
q 0.56–1 −0.489 < 0.001 −0.498 < 0.001
µI 0.001–0.01 −0.061 0.055 −0.093 < 0.004
ρ 0.143–0.33 −0.273 < 0.001 −0.345 < 0.001
γ 0.143–0.33 0.013 0.672 0.103 < 0.002
ξ 0.8–1 −0.474 < 0.001 −0.665 < 0.001
bs 0.9–0.99 −0.258 < 0.001 −0.403 < 0.001
η 0.5–0.7 −0.093 < 0.004 −0.053 0.095
π 0.33–1 — — −0.356 < 0.001

a Model with rapid laboratory testing
b Model with a time-delay in laboratory testing
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Table S3: Relative influence of the model parameters on the response (i.e., CDI prevalence)
based on their PRCC indices and p-values below the significance level in the sensitivity anal-
ysis with R0 = 2.6

relative influence
Model rapid laboratory testing time-delay in laboratory testing
parameters strong moderate weak strong moderate weak
f   
κ   
ν   
ψ   
σ  —
θ   
q   
ρ   
γ —  
ξ   
bs   
η  —
π  

Figures S6-S9 shows the scatter plots of partial residual of parameters used in the sensi-
tivity analysis, corresponding to reproduction numbers R = 1.07 and R0 = 2.6, and models
with rapid testing and with a time-delay in the release of laboratory results.
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Figure S6: PRCC scatter plots for R0 = 1.07 in the model with rapid laboratory testing.
The abscissa represents the residuals of the linear regression between the rank-transformed
values of the parameter under investigation versus the rank-transformed values of all the
other parameters. The ordinate represents the residuals of the linear regression between
the rank-transformed values of the response versus the rank-transformed values of all the
parameters under investigation.
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Figure S7: PRCC scatter plots for R0 = 1.07 in the model with a time-delay between sample
collection and the release of laboratory results. The abscissa represents the residuals of the
linear regression between the rank-transformed values of the parameter under investigation
versus the rank-transformed values of all the other parameters. The ordinate represents the
residuals of the linear regression between the rank-transformed values of the response versus
the rank-transformed values of all the parameters under investigation.
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Figure S8: PRCC scatter plots for R0 = 2.6 in the model with rapid laboratory testing. The
abscissa represents the residuals of the linear regression between the rank-transformed val-
ues of the parameter under investigation versus the rank-transformed values of all the other
parameters. The ordinate represents the residuals of the linear regression between the rank-
transformed values of the response versus the rank-transformed values of all the parameters
under investigation.
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Figure S9: PRCC scatter plots for R0 = 2.6 in the model with a time-delay between sample
collection and the release of laboratory results. The abscissa represents the residuals of the
linear regression between the rank-transformed values of the parameter under investigation
versus the rank-transformed values of all the other parameters. The ordinate represents the
residuals of the linear regression between the rank-transformed values of the response versus
the rank-transformed values of all the parameters under investigation.
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