
Appendix

A1 Profile Likelihoods for Fitted Parameters.
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Figure A1: Profile likelihood plots for estimated parameters top row: ka (left) ,kc (right), second row: βW
(left), βI (right), and third row: ξ. Note: The βW and ξ ranges were extended to capture the 95% confidence
intervals.
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A2 Cumulative Cases of Alternative Seeding Scenarios.

Table A2: Cumulative Cases of Alternative Seeding Scenarios.

Vaccination Scenario Cases Attack Rate (per 1,000 people)
Baseline: No vaccination 395.4 8.7

Pre-Vaccination

Maela 0.1 0.002

One-dose only 239.8 5.3

Two-dose only 233.5 5.2

Mixed 236.6 5.2

first come, first served 237.8 5.3
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A3 Cumulative Cases of Alternative Seeding Scenarios.
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Figure A3: Alternative seeding scenario: one actual case. Cumulative cholera cases in adults and children, for
different pre-vaccination scenarios. Where ‘nv’ is the baseline, no vaccination scenario; ‘p1d’ is the one-dose
scenario; ‘p2d’ is the two-dose scenario; ‘pmixed’ is the mixed scenario.
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A4 Maela Vaccination Coverage Calculations.

Table A4: OCV coverage data from the 2013 vaccine campaign. The “% Coverage” column
indicates the percent coverage for the entire population (all included and excluded subjects).
The “Number of Individuals” column indicates the initial conditions used in the model, cal-
culated from the coverage percentages.

Class % Coverage Number of Individuals
Non-vaccinated infectious adults - seeding (Ia) 0% 72

Non-vaccinated adults (Sa) 0% 7,856

Once-vaccinated adults (Va) 22.3% 6,208

Twice-vaccinated adults (V Va) 49.3% 13,765

Non-vaccinated infectious children - seeding (Ic) 0% 53

Non-vaccinated children (Sc) 0% 3,021

Once-vaccinated children (Vc) 18.7% 3,241

Twice-vaccinated children (V Vc) 63.6% 11,018
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A5 Pre-vaccination with Reduced Vaccine Effectiveness Among Chil-
dren
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Figure A5: Varying one-dose vaccine effectiveness and total doses for different pre-vaccination scenarios with
reduced vaccine effectiveness estimates among children.
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A6 Reactive vaccination with Reduced Vaccine Effectiveness Among
Children
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Figure A6: Varying one-dose vaccine effectiveness and delay in campaign implementation for different reactive
vaccination scenarios, with reduced vaccine effectiveness estimates among children.
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A7 2013 Forecasting Results with Partially Immune Population.
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Figure A7: 2013 forecast with a single actual case in adults and children as seeding. These plots show a
partially immune population with no OCV campaign on left and with OCV campaign on right.
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A8 2014 Forecasting Results
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Figure A8: 2014 forecast with a single actual case in adults and children as seeding. First row: Fully
susceptible population with OCV campaign. Second row: Partially immune population with OCV campaign.
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A9 Model equations and additional details

A9.1 Simplified Model Equations

The simplified age-structured model equations with no vaccination are below. This model was used
for the identifiability analysis to calculate R0 and was fit to the Maela outbreak data.

Force of Infection Equations

λa = βaaIa + βcaIc + βwaW

λc = βacIa + βccIc + βwcW
(1)

Non-Vaccinated Adults

Ṡa =
Ma

2
− λaSa − µaSa

İa = λaSa − γIa − µaIa

Ṙa =
Ma

2
+ γIa − µaRa

(2)

Non-Vaccinated Children

Ṡc = B +
Mc

2
− λcSc − µcSc

İc = λcSc − γIc − µcIc

Ṙc =
Mc

2
+ γIc − µcRc

(3)

Environmental Pathogen

Ẇ = ξ(λw −W )

λw = Ia + σIc
(4)

A9.2 Full Model Equations

The full age-structured model equations separated by non-vaccinated, once-vaccinated, and twice-
vaccinated individuals are below. If fitted, parameter values are from the simplified model (above)
and the remaining non-fitted values (e.g., vaccine effectiveness) are from the literature, see Table
1. This model was used to examine the different counterfactual vaccination scenarios.
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Force of Infection Equations

λa = βaaIa + βcaIc + βwaW + βaaIVa + βcaIVc + βaaIV Va + βcaIV Vc

λva = (1− VE1)(βaaIa + βcaIc + βwaW + βaaIVa + βcaIVc + βaaIV Va + βcaIV Vc)

λvva = (1− VE2)(βaaIa + βcaIc + βwaW + βaaIVa + βcaIVc + βaaIV Va + βcaIV Vc)

λc = βacIa + βccIc + βwcW + βacIVa + βccIVc + βacIV Va + βccIV Vc

λvc = (1− VE1)(βacIa + βccIc + βwcW + βacIVa + βccIVc + βacIV Va + βccIV Vc)

λvvc = (1− VE2)(βacIa + βccIc + βwcW + βacIVa + βccIVc + βacIV Va + βccIV Vc)

(5)

Non-Vaccinated Adults

Ṡa = −µaSa − λaSa +Ma/2− νa1Sa
İa = λaSa − µaIa − γIa
Ṙa = γIa − µaRa +Ma/2− νa1Ra

(6)

Once-Vaccinated Adults

˙SV a = −λvaSVa − µaSVa + νa1Sa − νa2SVa
˙IV a = λvaSVa − µaIVa − γIVa
˙RV a = γIVa − µaRVa + νa1Ra − νa2RVa

(7)

Twice-Vaccinated Adults

˙SV V a = −λvvaSV Va − µaSV Va + νa2SVa

˙IV V a = λvvaSV Va − µaIV Va − γIV Va
˙RV V a = γIV Va − µaRV Va + νa2RVa

(8)

Non-Vaccinated Children

Ṡc = −µcSc − λcSc +Mc/2 +B − νc1Sc
İc = λcSc − µcIc − γIc
Ṙc = γIc − µcRc +Mc/2− νc1Rc

(9)

Once-Vaccinated Children

˙SV c = −µcSVc − λvcSVc + νc1Sc − νc2SVc
˙IV c = λvcSVc − µcIVc − γIVc
˙RV c = γIVc − µcRVc + νc1Rc − νc2RVc

(10)
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Twice-Vaccinated Children

˙SV V c = −λvvcSV Vc − µcSV Vc + νc2SVc

˙IV V c = λvvcSV Vc − µcIV Vc − γIV Vc
˙RV V c = γIV Vc − µcRV Vc + νc2RVc

(11)

Environmental Pathogen

λw = Ia + σIc + IVa + σIVc + IV Va + σIV Vc

Ẇ = ξ(λw −W )
(12)

Total Population Sizes

Na = Sa + Ia +Ra + SVa + IVa +RVa + SV Va + IV Va +RV Va

Nc = Sc + Ic +Rc + SVc + IVc +RVc + SV Vc + IV Vc +RV Vc
(13)

A9.3 Forecasting Model equations

The age-structured model equations used for the forecasting scenarios are below.

Non-Vaccinated Adults

Ṡa = MaMsusc − βI(Ia + Ic)Sa − βWWSa + 2αV 1a − µaSa
İa = (Sa + (1− VE1D)V 1a + (1− VE2D)V 2a)(βI(Ia + Ic) + βWW )− γIa − µaIa

(14)

Non-Vaccinated Children

Ṡc = McMsusc +B − βI(Ia + Ic)Sc − βWWSc + 2αV 1c − µcSc
İc = (Sc + (1− VE1D)V 1c + (1− VE2D)V 2c)(βI(Ia + Ic) + βWW )− γIc − µcIc

(15)

Immune Adults

Ṙa = γIa − 2αRa − µaRa (16)

Immune Children

Ṙc = γIc − 2αRc − µcRc (17)
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Partial Immune/Vaccinated Adults

˙V 1a = Ma(1−Msusc)− ((1− VE1D)V 1a)(βI(Ia + Ic)− βWW )+

2α(V 2a − V 1a)− µaV 1a

˙V 2a = ((1− VE2D)V 2a)(−βI(Ia + Ic)− βWW ) + 2α(Ra − V 2a)− µaV 2a

(18)

Partial Immune/Vaccinated Children

˙V 1c = Mc(1−Msusc)− ((1− VE1D)V 1c)(βI(Ia + Ic)− βWW )+

2α(V 2c − V 1c)− µcV 1c

˙V 2c = ((1− VE2D)V 2c)(−βI(Ia + Ic)− βWW ) + 2α(Rc − V 2c)− µcV 2c

(19)

Environmental Pathogen

Ẇ = ξ(Ia + Ic −W ) (20)

Identifiability Analysis

Identifiability analysis addresses the question of whether the model parameters can be estimated
from a given data set [1]. Identifiability is typically broken into two broad categories—(1) struc-
tural identifiability, which examines theoretical identifiability from the structure of the model and
measured variables, and (2) practical identifiability, which addresses how a model’s identifiability
properties are affected by real-world data issues such as noise and sampling frequency.

Structural Identifiability Analysis

To examine the structural identifiability of our simplified age-structured model, we used the differential-
algebra based approach developed in [1–6]. Determining the structural identifiability of the model
is a prerequisite to determining if there is a unique solution for a set of unknown model parameters
[2]. Structural identifiability can be framed as evaluating whether the model parameters can be
estimated uniquely, when the data is assumed to be ‘perfect’ (i.e., noise-free and measured for
all time points). Establishing structural identifiability is a prerequisite for successful parameter
estimation from real-world, noisy data. When parameters are not individually identifiable, groups
of parameters typically form identifiable combinations that can be uniquely determined.

In the differential algebra approach, the unmeasured state variables (e.g. SA, SC , etc.) are
eliminated, leaving equations only the measured variables, their derivatives, and the parameters,
denoted the input-output equations. In this case, the measured variables are cholera incidence
among adults and children. The identifiability from cholera incidence was more easily analyzed
using the prevalence approximation, which as γ is assumed to be known, yields the same structural
identifiability results as the standard incidence. We assumed the demographic parameters, initial
population sizes, and recovery rate are known from data as described above and defined in Table 1,
and the remaining parameters (βij ’s, k’s, α, σ, and ξ) were considered unknown. A Gröbner-basis

12



approach was then used to test whether the unknown model parameters in Equations (1) – (4) are
identifiable from the measured data, with all calculations performed in Mathematica Version 10.

Similar to the original SIWR model [1], the waterborne transmission parameters and α were not
separately identifiable for our model, instead forming the identifiable combination β̄w = α

ξ βW . To

address this, we define W̄ = ξ
αW . Rewriting the model equations in terms of these new variables

yields the following equation for environmental pathogen:

˙̄W = ξ(λw − W̄ )

with all other equations remaining the same except replacing W with W̄ and the identifiable
combination β̄w. Once re-scaled, all unknown model parameters (βI , β̄W , σ, ξ, and the k’s) were
structurally identifiable. From this point forward (and for the parameter estimation and other
analyses), we use only the rescaled versions of βW and W , and thus we will omit the bar notation.

Practical Identifiability

Initially, even though structural identifiability was considered, we obtained extremely similar fits for
a wide range of transmission parameter values, suggesting that there were practical unidentifiability
issues wherein the reporting parameters (ka and kc) and adult and child transmission parameters
can partially compensate for one another to yield the same overall apparent cholera incidences. For
the sake of parsimony [7], we set all human-human transmission parameters equal to each other,
denoted βI , and separately we set all human-water transmission parameters equal to each other,
denoted βW . Similarly, σ, the relative shedding rate for adults and children, was also relatively
practically unidentifiable, and so we set shedding to be equal for both classes.

To examine practical identifiability and parameter uncertainty, we plotted profile likelihoods
of each fitted parameter. Profile likelihoods are a numerical approach to evaluating parameter
uncertainty and identifiability [8]. Profiles are generated by fixing the profiled parameter to a series
of values, while fitting the remaining parameters that are being estimated. Typically, the minimum
negative log likelihood (or equivalently the maximum likelihood) values are plotted for each value of
the profiled parameter, forming the profile likelihood for that parameter. The minimum represents
the best-fit value of the profiled parameter and is determined by parameter estimation. If the profile
is flat, the parameter cannot be uniquely determined and is considered unidentifiable. However,
even if the profile is structurally identifiable, the curvature may be quite shallow, so that a particular
minimum cannot practically be distinguished - this is denoted practical unidentifiability. Confidence
intervals can be determined from the profile likelihood by setting a significance-based threshold on
the likelihood based on a χ2 distribution [8]. Once the threshold is set, all parameters corresponding
to likelihood values below the threshold fall within the confidence interval. The results from the
profile likelihood plotting can be seen in Figure A1.

Sensitivity Analysis: Initial Seeding from Observed to Actual

As another sensitivity analysis, we changed our initial seeding from one observed case to one actual
case for the Maela and pre-vaccination scenarios. Because vaccination occurred before any outbreak,
administration of the vaccine was not affected by case detection. Overall, we see the same pattern
of results, shown in Figure A3 and Table A2. The two-dose scenario sees the largest reduction in
cases followed by the mixed, first come, first served, and one-dose scenarios. Since the number of
initial infected individuals is lower, the total cumulative case counts are as well. Of note is that
the reduction in cases is greater for pre-vaccination scenarios than for the baseline non-vaccination
scenario.
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Maela Vaccine Coverage Calculations

Among included individuals (pregnant women and infants < 1 year were excluded), the OCV
campaign covered 51% of adults and 68% of children with two doses, and another 23% of adults
and 20% of children with one dose. We made the following adjustments to determine total Maela
coverage among both included and excluded individuals for the forecasting scenarios:

• Once-vaccinated adults:
(Va − V Va)((Na− Pregnant women)/(Na))Na

((0.74-0.51)*(27901-910)/27901)*27901 = 6207.9

• Twice-vaccinated adults:
(V Va)((Na− Pregnant women)/(Na))Na

(0.51*(27901-910)/27901)*27901 = 13765.4

• Once-vaccinated children:
(Vc − V Vc)((Nc− infants under 1 year old)/(Nc))Nc

((0.88-0.68)*(17332-1129)/17332)*17332 = 3240.6

• Twice-vaccinated adults:
(V Vc)((Nc− infants under 1 year old)/(Nc))Nc

(0.68*(17332-1129)/17332)*17332 = 11018

Table A4 shows the total number of individuals by class used to simulate the OCV campaign.

Forecasts for the 2013 Cholera Season

In the 2013 forecasting results, we see a larger spread of total case numbers for runs in the scenario
without the OCV campaign compared to the scenario with the OCV campaign. The partially
immune population runs generally have lower case counts when comparing to the fully susceptible
population. Furthermore, for the scenarios that consider the OCV campaign, we see that the vast
majority of runs having case counts close to 0. For details see Figures 8 and A7.

Forecasts for the 2014 Cholera Season

The 2014 forecasting results are quite similar to the 2013 runs for the fully susceptible population
compared to the partially immune population with more runs resulting in 0 total cases for the
partially immune population. As population immunity wanes between 2013 and 2014 we get a
higher proportion of larger outbreaks for the 2014 forecasting scenarios, but the vast majority of
runs remain close to 0 for both the fully susceptible and partially immune populations. For details
see Figure A8.
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