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1 Statistical model

The data about the spatio-temporal distribution of Coronavirus disease 2019 (COVID-19) in-
fections at province level consist in multivariate count time series whose spatial references are
in the form of irregular spatial lattices. Therefore, the proper regression modelling framework
for this empirical circumstance is the class of the so-called areal Generalized Linear Models
(GLMs). By extending the seminal model originally introduced by Held et al. (2005), Paul and
Held (2011) proposed an endemic-epidemic multivariate time-series mixed-effects GLM for areal
disease counts, which proved to provide good predictions of infectious diseases (see Adegboye
and Adegboye, 2017; Cheng et al., 2016, among the others).

The main equation of the model describes the expected number of infections µr,t in a region
(province) r at time (day) t as follows:

µr,t = λr Yr,t−1 + φr
∑
r′ 6=r

wr′,rQr′,t−1 + er νr,t , (1)

where Yr,t is the number of infections reported in the region r at time t, which follows a negative
binomial distribution with region-level overdispersion parameter ψr. If ψr > 0 the conditional
variance of Yr,t−1 is µr,t(1 + ψr µr,t), while if ψr = 0 the negative binomial distribution reduces
to a Poisson distribution with parameter µr,t.

The three terms on the right-hand side of Equation (1) correspond to the three components
of the model: the epidemic-within, the epidemic-between, and the endemic.

The first component models the contribution of temporal dynamics of contagions to the
expected number of infections within region r. The term includes the number of infections
observed in the previous day (time t − 1), which affect µr,t depending on the value of the
coefficient λr > 0. As the notation suggests, λr changes amongst the provinces because of a
random effect which allows for heterogeneous behaviour in the dynamics of contagions.

The epidemic-between component models the contagion between neighbouring provinces by
including the average incidence of the infections Qr′,t−1 of provinces r′ which are neighbours of
province r. In particular, the coefficients wr′,r in the summation

∑
r′ 6=r wr′,rQr′,t−1 are positive

if either province r′ and r share a border or province r′ and r share a border with the same
province, whereas wr′,r is zero otherwise. The coefficient φr determines the magnitude of the
effect of inter-province spread of contagion, and changes amongst provinces according to the
population as well as to unobserved heterogeneity in the diffusion process.
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The last component determine the province-specific contribution to the number of infections,
once the temporal and spatial autoregressive effect are accounted for. The term er is the
population of province r, whereas term νr,t consists of a national time trend component, and a
province-specific effect depending on the share of population over 65, and on a random effect
which catches the heterogeneity due to unobserved factors.

Paul and Held (2011) suggested that the endemic and epidemic subcomponents can be
modelled themselves through log-linear specifications:

log(λr,t) = α(λ)
r + β(λ)>z

(λ)
r,t , (2)

log(φr,t) = α(φ)
r + β(φ)>z

(φ)
r,t , (3)

log(νr,t) = α(ν)
r + β(ν)>z

(ν)
r,t . (4)

where the α
(·)
r parameters are region-specific intercepts and z

(·)
r,t represent observed covariates

that can affect both the endemic and epidemic occurrences of infections. The varying intercepts
allow to control for unobserved heterogeneity in the disease incidence levels across regions due,
for example, to under-reporting of actual infections (Paul and Held, 2011). Given the regionally
decentralized health system in Italy, non-negligible differences in case reporting of COVID-19
infections among Italian regions are very likely, which make the opportunity to have region-
specific intercepts very important. Following Paul and Held (2011) region-specific intercepts
can be obtained through the inclusion of random effects. In particular, we assume here that

α(λ)
r

iid∼ N(α(λ), σ2
λ), and α(φ)

r
iid∼ N(α(φ), σ2

φ), α(ν)
r

iid∼ N(α(ν), σ2
ν).

The Paul and Held (2011) model with normally distributed random effects can be estimated
through penalized likelihood approaches that have been implemented in the R package surveil-
lance (Meyer et al., 2017). See Paul and Held (2011) for futher details.

1.1 Epidemic-within submodel

Given the brevity of the observed time series, the epidemic-within autoregressive parameter is
assumed to be constant over time and, in absence of useful exogenous covariates, the model of
Equation (2) takes the form

log(λr) = α(λ)
r ,

that is, the “internal” infectiousness depends only on a spatially varying intercept.

1.2 Epidemic-between submodel

Following Meyer and Held (2014), the subcomponent model for the epidemic within autoregres-
sive parameter, Equation (3), is here specified as

log(φr,t) = α(φ)
r + β(φ) log er,

which accounts for the fact that the regions may have different propensities to be affected by
the other neighbouring regions, and this may depend by their resident population share. The
rationale is that the more populated regions tend to be more susceptible to transmission across
regions.
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1.3 Endemic submodel

Since some first recent empirical evidences suggest that the number of COVID-19 infections
seems to grow exponentially over time (Liu et al., 2020; Maier and Brockmann, 2020), the
endemic component model assessing the temporal dynamic of disease incidence, Equation (4),
is specified as a second-order polynomial log-linear regression:1

log(νr,t) = α(ν)
r + β

(ν)
1 t+ β

(ν)
2 t2 + β

(ν)
3 log(ar),

where t = 1, 2, . . . is the time in days and ar is the proportion of inhabitants over 65 years old.
In the global model of Equation (1) the endemic predictor νr,t is multiplied by the offset er,

which in our case is the regional share of resident population.

2 Supplementary Results

Figure 1: Time series of daily COVID-19 infections in the Italian provinces between 26 Febru-
ary 2020 and 31 May 2020, according to data released by the Department of Civil Protection.
Note the sharp increase of daily infections in some northern provinces (such as, e.g., Milano,
Bergamo, and Brescia) as opposed to several southern provinces (such as, e.g., Trapani and Cal-
tanissetta) where the first infections appeared only recently and the overall number remained
low.
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Table 1: Maximum penalized likelihood estimates of parameters of model (1). Both point
estimates (second column) and standard errors (third column) refer to quantities in the first
colum. Standard errors of variances of random effects (σ2

λ, σ2
φ, σ2

ν) cannot be estimated.

Parameter Estimate St. Error

exp(α
(λ)
r ) 0.268∗∗∗ 0.021

β(φ) 0.893∗∗∗ 0.125

exp(α
(φ)
r ) 124.0 77.940

exp(α
(ν)
r ) 1941.0 2922.0

exp(β
(ν)
1 ) 1.184∗∗∗ 0.008

exp(β
(ν)
2 ) 0.998∗∗∗ 0.000

β
(ν)
3 3.460∗∗∗ 1.253
σ2
λ 0.413 –
σ2
φ 0.655 –

σ2
ν 1.001 –
∗∗∗p-value < 0.01, ∗∗p-value < 0.05, ∗p-value < 0.1

Figure 2: Prediction intervals (confidence: 95%) of one-day ahead forecast of the number of
COVID-19 infections on 31 May for all 107 Italian provinces. The number of infections is
predicted according to model (1) fitted on data between 27 February 2020 and 30 May 2020.
Each province is identified by the acronym (see also Tables 2 and 3), whereas prediction intervals
are delimited by black interval bars. Black and red dots respectively represent point predictions
and observed values.
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Table 2: Observed and predicted number of COVID-19 infections at 31 May 2020 according to
model (1) fitted on data between 27 February 2020 and 30 May 2020 (continued).

Province Acronym Observed No. Infections Predicted No. Infections
Pordenone PN 0 0.9
Isernia IS 0 0
Biella BI 1 0.9
Lecco LC 7 4.5
Lodi LO 6 10.8
Rimini RN 0 1.8
Prato PO 0 0.4
Crotone KR 0 0
Vibo Valentia VV 0 0
Verbano-Cusio-Ossola VB 0 0.6
Monza e della Brianza MB 4 7.4
Fermo FM 0 0
Barletta-Andria-Trani BT 0 0.1
Torino TO 20 41.9
Vercelli VC 4 3.3
Novara NO 7 8.3
Cuneo CN 6 11.9
Asti AT 13 6.4
Alessandria AL 3 11.6
Aosta AO 1 1.1
Imperia IM 5 7.4
Savona SV 0 9.1
Genova GE 7 12.9
La Spezia SP 0 0.1
Varese VA 25 5.7
Como CO 13 4.7
Sondrio SO 3 2.1
Milano MI 32 54.5
Bergamo BG 43 27.6
Brescia BS 44 26.7
Pavia PV 10 18.7
Cremona CR 11 8.4
Mantova MN 12 3.7
Bolzano BZ 1 1
Trento TN 1 2.3
Verona VR 1 4.2
Vicenza VI 1 1.4
Belluno BL 3 0.8
Treviso TV 0 1
Venezia VE 0 1.9
Padova PD 1 0.6
Rovigo RO 0 0.1
Udine UD 1 0.4
Gorizia GO 0 0.1
Trieste TS 1 0.6
Piacenza PC 10 4.3
Parma PR 7 5.5
Reggio nell’Emilia RE 1 3.1
Modena MO 5 2.9
Bologna BO 5 6.5
Ferrara FE 1 0.4
Ravenna RA 1 0.8
Forl̀ı-Cesena FC 1 0.6
Pesaro e Urbino PU 1 2.5
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Table 3: Observed and predicted number of COVID-19 infections at 31 May 2020 according to
model (1) fitted on data between 27 February 2020 and 30 May 2020 (continued).

Province Acronym Observed No. Infections Predicted No. Infections
Ancona AN 1 0.8
Macerata MC 1 0.3
Ascoli Piceno AP 0 0
Massa Carrara MS 0 0.9
Lucca LU 0 0.9
Pistoia PT 0 0.7
Firenze FI 3 3.9
Livorno LI 0 0.3
Pisa PI 1 0.7
Arezzo AR 0 0.2
Siena SI 0 0.2
Grosseto GR 0 0.1
Perugia PG 0 0.2
Terni TR 0 0.1
Viterbo VT 0 0.1
Rieti RI 0 0
Roma RM 11 3
Latina LT 1 0.1
Frosinone FR 1 0.1
Caserta CE 1 0.2
Benevento BN 1 0.2
Napoli NA 1 1.1
Avellino AV 1 1.1
Salerno SA 0 0.4
L’Aquila AQ 0 0
Teramo TE 0 0
Pescara PE 5 0
Chieti CH 2 0.1
Campobasso CB 0 0.1
Foggia FG 2 0.7
Bari BA 2 3
Taranto TA 0 0.1
Brindisi BR 0 0.2
Lecce LE 0 0.1
Potenza PZ 0 0.1
Matera MT 0 0.1
Cosenza CS 0 0.1
Catanzaro CZ 0 0
Reggio di Calabria RC 0 0
Trapani TP 0 0.1
Palermo PA 0 0.5
Messina ME 0 0.7
Agrigento AG 0 0
Caltanissetta CL 1 0.2
Enna EN 0 0.8
Catania CT 0 0.7
Ragusa RG 0 0.1
Siracusa SR 0 0.2
Sassari SS 0 0
Nuoro NU 0 0
Cagliari CA 0 0
Oristano OR 0 0
Sud Sardegna SU 0 0
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