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Additional Files
Additional file 1 — Mathematical description of the model

A population of size N individuals is assumed. The model follows the time change

of the number of individuals being susceptible (S), in the latent period (ESum)

consisting of nE sub-states (Ek, k = 1, . . . , nE), in the prodromal period (PSum)

consisting of nP substates (Pk, k = 1, . . . , nP ), or in the final infectious period

(ISum) consisting of nI substates (Ik, k = 1, . . . , nI), in the final “removed” stage

(R), or dead individuals (D). Therefore, the numbers of individuals in the latent,

prodromal, and final infectious periods are given by

ESum(t) =

nE∑

k=1

Ek(t), (1a)

PSum(t) =

nP∑

k=1

Pk(t), (1b)

and

ISum(t) =

nI∑

k=1

Ik(t), (1c)

A fraction fSick of individuals in the final infectious period has a symptomatic

infection, i.e., they get sick, resulting in

ISick(t) = fSick

nI∑

k=1

Ik(t). (2)

such cases. A fraction fIso of symptomatic infections get hospitalized, and will be

put into isolation wards, until its maximum capacity (Qmax) is reached, in which

case they go into home isolation. Isolation measures are sustained only in the time

interval from tIso1 to tIso2 . Thus, the number of individuals in quarantine wards and

home isolations at time t are, respectively,

IIso(t) = min
{
Qmax, fIsoISick(t)

}
1l[tIso1 ,tIso2 ](t) (3)

and

IHome(t) = max{0, fIsoISick(t)−Qmax}
)
1l[tIso1 ,tIso2 ](t). (4)

where, 1lA(t) denotes the indicator function, attaining the value 1 if t ∈ A and 0

if t �∈ A. Quarantine wards are supposed to prevent all contacts, whereas home

isolation only prevents a fraction pHome. Thus, the number of individuals in the

final infectious period at time t that can infect susceptible individuals is effectively

reduced to

IEff(t) = ISum(t)− IIso(t)− pHomeIHome(t). (5)
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Succeeding the last stage of the final infectious period, symptomatic infections

result in death with probability fDead, such that the number of deaths at time t

increases by

γfDeadfSickInI
(t). (6)

Individuals who do not die, recover from the disease and are assumed to be immune.

The average durations of the latent, prodromal and final infectious periods are

denoted by DE , DP and DI , respectively. The classical approach to model the time

change of the number of latent, prodromal and infected individuals is to assume

that individuals proceed from one state to the next at rates 1/DE , 1/DP and

1/DI , respectively, leading for instance to the following differential equation for P

dP

dt
=

1

DE
E − 1

DP
P.

Such an approach is, however, too simplistic because the time-delay from, e.g., the

latent to the prodromal stage would be exponentially distributed, which would not

appropriately describe the dynamics.

This issue is resolved here, because the latent, prodromal and final infectious

periods are divided into several sub-stages. Infected individuals successively pass

through nE latent, then through nP prodromal, and through nI final infectious

states. Individuals leave each of the latent sub-states at the rate ε with

ε =
nE

DE
, (7a)

i.e., the average duration spent in each of the nE prodromal sub-stages is DE/nE .

Similarly, all prodromal and latent sub-states have the same rates denoted by ϕ

and γ, respectively, defined by

ϕ =
nP

DP
and γ =

nI

DI
. (7b)

The basic reproduction number R0 is the average number of infections caused

by an infected individual in a completely susceptible population in which no inter-

ventions occur, during the entire period of that infected individual’s infectiousness.

This number summarizes all the infections, which are caused during the entire in-

fectious period DP + DI . This definition of R0 specifically requires that initially

everybody but the infectious individual in the population is susceptible and there

are no intervention measures. R0 is assumed to fluctuate seasonally, with a peak in

the winter

R0(t) = R̄0

(
1 + a cos

(
2π

t− tR0max

365

))
, (8)

which is a periodic fluctuation across the year where the amplitude a (0 ≤ a ≤ 1)

mediates the seasonal effect on transmission and tR0max
indicates the time at which

the seasonal peak of infections is attained. R̄0 is the annual average of the basic
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reproduction number. Correctly interpreted, R0(t) is the basic reproductive number

if the disease is introduced at time t. The contact rates of susceptible individuals

with prodromal or the individuals in the final infectious period are βP (t)P (t) and

βI(t)IEff(t), respectively, if no interventions that further reduce contacts are per-

formed. During the time in which the individual is in the prodromal period, he or

she is not yet fully infectious. The relative infectiousness in that period is denoted

by cP , so that βP (t) = cPR0(t)
cPDP+DI

, which is time-dependent as R0 may fluctuate

seasonally. Hence,

βP (t) =
cP R̄0

cPDP +DI

(
1 + a cos

(
2π

t− tR0max

365

))
. (9)

Following the same reasoning, the effective contact rate of full-contagious individuals

is

βI(t) =
R̄0

cPDP +DI

(
1 + a cos

(
2π

t− tR0max

365

))
. (10)

Finally, infections may also occur from outside of the population at a rate λExt,

which is assumed to be constant. CovidSIM also allows addressing time-dependent

interventions to reduce contacts by social distancing. pDist(t) denotes the fraction of

contacts that are prevented by control measures. Hence, the effective contact rates,

βP (t)P (t) and βI(t)IEff(t), are multiplied by 1 − pDist(t) while these interventions

are activated. It is assumed that these contact-reducing interventions prevail only

during the time interval from tDist1 totDist2 , i.e.,

pDist(t) = c 1l[tDist1 ,tDist2 ]
(t), (11)

where c is the fraction of contacts that are reduced due to social distancing between

time tDist1 and tDist2 .

Putting together the assumptions listed above, we have the system

dS

dt
= −

(
(
1− pDist(t)

)(
βP (t)PSum(t) + βI(t)IEff(t)

)
+ λExt

)
S(t)

N
, (12a)

dE1

dt
=

(
(
1− pDist(t)

)(
βP (t)PSum(t) + βI(t)IEff(t)

)
+ λExt

)
S(t)

N
− εE1,

(12b)

dEk

dt
= εEk−1(t)− εEk(t) for 2 ≤ k ≤ nE , (12c)

dP1

dt
= εEnE

(t)− ϕP1(t), (12d)

dPk

dt
= ϕPk−1(t)− ϕPk(t) for 2 ≤ k ≤ nP , (12e)

dI1
dt

= ϕPnP
(t)− γI1(t), (12f)

dIk
dt

= γIk−1(t)− γIk(t) for 2 ≤ k ≤ nI , (12g)

dR

dt
= γ(1− fDeadfSick)InI

(t), (12h)
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and

dD

dt
= γfDeadfSickInI

(t). (12i)


