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1 Model details

1.1 Mobility model

Each municipality constitutes a patch in the model. Commuting data from the Belgian census [1]
is used to construct the daily commuting network among different Belgian municipalities. These
mobility fluxes correspond to people with daily mobility patterns between two municipalities, iden-
tified as their residence municipality and the municipality of their work/school. No data detailing
mobility for other activities (e.g. leisure) is included.
We divide our simulational steps into daytime (even) and night-time (odd). At the beginning of
every daytime time step, the number of individuals commuting from patch i to other patches T ai is
generated via a time homogeneous Poisson process

T ai ∼ Poisson(pai , Ni) (1)

where Ni is the population of patch i and pai is the probability that an individual in age class a
that resides in patch i commutes to other patches (i.e. the ratio of the age specific commuting
population of patch i divided by the age specific population of the patch). After the number of
commuters leaving the patch is computed, the number of commuters between any two patches i
and j is modelled via a multinomial process:

T aij ∼ Multinomial(p̂ai,j , T
a
i ) (2)

where p̂ai,j is the probability that an individual in age class a resident in patch i commutes to patch
j on a daily basis (i.e. the number of commuters between i and j divided by the full commuting
population of patch i).
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The probabilities of the two stochastic processes are computed from the 2001 Belgian Census, the
last one providing commuting information (residence and working/school municipality) for the full
Belgian population. The patch population (Ni, above) is given by population estimates for 2019.
The percentages of individuals working on Saturdays and Sundays is used as a mobility reduction
factor during weekend days.
At the beginning of every night-time time step, commuters move back to their residence location.
Within country air travel was not considered due to negligible traffic.

1.2 Compartmental model

In every patch of the metapopulation system, a two-age class SEIR model is defined [2]:

dS

dt
= −βSC(t)

N
I (3)

dE

dt
= βS

C(t)

N
I − εE (4)

dI

dt
= εE − µI (5)

dR

dt
= µI (6)

(7)

where S,E,I,R, are the 2-component vectors (e.g. S =

(
S1
S2

)
), whose elements are the number

of individuals in the two age classes at time t in the susceptible, exposed, infected and recovered
compartment. Here N is the considered population and C(t) is the contact matrix, the 2x2 matrix
defining age class mixing. The parameter β is the per-contact infection probability, whereas ε and
µ correspond to the latent period and the recovery time.
We implemented the SEIR equations defining transition probabilities for small dt and age class i
as:

pS→Ei (t) = 1− e−βλ(i,t)dt (8)

pE→Ii = 1− e−εdt (9)

pI→Ri = 1− e−µdt (10)

(11)

where we have inserted the force of infection (FOI) for age class i in patch p, λ(i, t). These transition
probabilities are defined in each patch and, while pE→Ii and pE→Ii are the same for all patches, the
force of infection depends both on time and the patch considered. The expression for the FOI for
age class i in patch p is (same as main paper):

λ(i, p, t) = β
∑
j

[
SusciCasympt

i,j (t)Infj
Ipp, j(t)+I

p
a, j(t)

Np(t) + (12)

+ SusciCsympt
i,j (t)Infj

Ipms, j(t)+I
p
ss, j(t)

Np(t)

]
(13)

where Ipx, j(t) is the number of infectious individuals of infection class x ()belonging to age class
j present in patch p at time t and Np(t) is the total patch population at time t. Equation (12)
can account for different susceptibility (Susci) and infectivity (Infj) for each age classes i and j.
The contact matrices used depend on time because of week/weekend cycles and because of the
intervention strategies implemented at any given time (see section “Population mixing” of the main
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paper). As mentioned, we split our time steps into daytime time steps (even) and night-time
time steps (odd). During even time steps, commuters contribute to the force of infection of their
destination patch. During odd time steps, they contribute to the force of infection of their origin
patch. This contribution is considered both in the Ipx, j(t) terms as well as in the population term
Np(t).
From the transition probabilities, the corresponding number of new individuals of age class i in the
compartments is generated using binomial processes:

Enew,i ∼ Binomial(pS→Ei (t), Si(t)) (14)

Inew,i ∼ Binomial(pE→Ii (t), Ei(t)) (15)

Rnew,i ∼ Binomial(pI→Ri (t), Ii(t)) (16)

(17)

Commuters are modeled with separate compartments, in order to track them in their movements
from residence to destination and back.

2 Software details

The code is developed in C++ and makes use of the boost libraries [3]. One run for the whole
population of Belgium takes less than three minutes on a regular laptop (Intel® Core™ i7-6700HQ
CPU @ 2.60GHz). All results presented in this manuscript are generated on the tier-2 infrastructure
of the VSC-cluster [4] using one of the Skylake nodes, each equipped with 2 Xeon Gold 6140
CPUs@2.3 GHz (Skylake) (18 cores each). For each scenario we considered 30 different stochastic
realizations, presenting results in terms of median value and percentile intervals. Data analysis
is performed in R and Python. The Bayesian optimization is implemented through the Python
package pyGPGO [5].

3 Model calibration

Figure 1: Calibration results. (a): Maximum of log-likelihood as a function of the iteration
number. A vertical dashed line marks the last improvement in log-likelihood. (b): Simulated number of
hospitalizations over time for the Maximum Likelikihood (ML) parameter set (line) and 95% confidence
interval (shaded area) considering min (max) values of all parameters.

We calibrated our model to national data on hospital admission [6] by maximizing the likelihood
with respect to hospitalization counts using Bayesian optimization [7] .
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To estimate the probability of developing severe symptoms (ps in Figure 1 of the main paper) we
compared results from a sero-prevalence [8] survey with hospitalization data [6]. We estimated this
probability as the ratio of the total number of hospitalizations (Nh) divided by the total number
of cases (Nc). The first quantity is obtained by summing the number of new hospitalizations over
time, while the second quantity can be inferred by multiplying the sero-prevalance by the total
Belgian population.

ps =
Nh

Nc
=

∑Nt
ti=1H(ti)

S(Nt − t∗) ·N
(18)

In the above, H(ti) is the number of new hospitalizations at day/time ti, Nt is the number of
times/days considered, N denotes the total Belgian population and t∗ takes into account the time
needed to build up antibodies against SARS-CoV-2 that can be detected in the sero-prevalence
survey. In our calculation we used a t∗ equal to 7 days and considering the midpoint of the week as
the data-collection day of the sero-prevalence survey. We evaluated eq. (18) using the latest date of
serological data collection (11th of May) not affected by re-opening after lockdown. This resulted
in a ps of 0.024 (CI [0.020 : 0.025]).
Our model takes parameters: the probability of per-contact transmission, the number of initial
infected on the 9th of March, the reduction in contact frequency during lockdown and time needed
to reach full compliance in lockdown adherence (see Table 1 of main paper). We considered data
up to the 4th of May and we maximised the likelihood, following the approach described below.
We considered hospitalization data to follow a Poisson distribution and we found our point estimates
for the parameter maximising the log-likelihood (LL):

LL =
∑
ti

[−H(ti) ∗ log Ĥ(ti) + Ĥ(ti)] (19)

where H(ti) is the number of new hospitalization at day/time ti, Ĥ(ti) is the simulated number of
new hospitalizations and the log-likelihood LL is written up to a constant factor. In order to fit
the the parameters of our computationally intensive simulator to the likelihood, we use Bayesian
optimization [7]. Our Bayesian optimization procedure uses a Matèrn kernel [9] and an acquisition
function that samples parameters according to the expected improvement algorithm [7]. To achieve
a fit, we obtained Ñ samples from our simulator (after 10 initialization steps) and assumed that the

process converged if in the last Ñ
2 iterations no improvement in the log likelihood was obtained. This

resulted in a total of 300 sampled iteration (see Figure 1 a) ). To estimate the confidence interval
of our parameter estimates, we evaluated numerically the Fischer information at the maximum of
the likelihood [10].
Visual inspection of the fit shows a good agreement with the number of hospitalizations over time.
Uncertainty of parameter estimates is affecting mostly the number of initial infected and the per-
contact transmission probability. Time to reach full compliance is compatible with 7 days and
larger/smaller values (e.g. 8 or 6 days) are outside the confidence interval. Table 1 of the main
paper shows best parameters estimates and the corresponding confidence interval.

4 Contact matrices

Figure 2 shows the contact matrices for weekdays before lockdown ( panels a and b ) and during
lockdown (panels c and d). A strong reduction in the total number of contacts during lockdown
with respect to pre-lockdown (∼ 85%) is obtained from the fitting procedure.
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Figure 2: Contact matrices for weekdays. (a): Contact matrix for pre-symptomatic (com-
partment Ip) before lockdown. (b): Contact matrix for symptomatic/asymptomatic (compartments
Ia,Ims,Iss) before lockdown. (c): Contact matrix for pre-symptomatic (compartment Ip) during lock-
down. (d): Contact matrix for symptomatic/asymptomatic (compartments Ia,Ims,Iss) during lock-
down.

5 Scenario with increased infectivity of children

We considered a scenario in which children are as infectious as adults (Figure 5). The increased
role of children in disease spread impacts our predicted scenarios as following. First, school closure
has a larger impact on the epidemic profile and in case of a large number of contacts at school
(60% of pre-pandemic values) the epidemic is peaking earlier. Also, as expected, a larger impact of
summer school closure is observed. In this scenario, school closure has a larger impact overall than
re-opening working places, while it is still less relevant than re-opening leisure activities.
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Figure 3: Percentage of face-mask using among Belgian adult population. Percentage of
adults participating in the CoMix survey [11] that wore a mask.

Figure 4: Summary of exit scenarios (up to the 31st of December).(a): peak value of daily
hospital admissions for different scenarios up to the 31st of December. (b): number of hospitalizations
up to the 31st of December. In both panels the y-axis shows the relative variation with respect to the
best-case (least contacts) scenario.
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marking the same scenario in different panels.
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