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1 SAfE Transport

1.1 Transit assignment engine

The transit assignment engine is an agent-based simulation platform that al-
lows us to understand the network of contacts between travelling passengers
(with whom and how long they stay in contact with) – a key input to mod-
elling the spread of infection in public transport networks. Its architecture
is presented in Figure 1.

The transit assignment engine requires input data on: (1) trip demand
(that is, trip origin, trip destination, and start trip time for every passen-
ger); and (2) transit service supply (that is, routes and schedules of public
transport services). The total number of trips on Sydney’s train network
before COVID-19 was about 8 million per week. To account for the pa-
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Figure 1: Transit assignment engine

tronage drop during the COVID-19 pandemic, we assume the demand to be
10% of the total, which aligns with the real-life observations [27, 29, 30] (see
Table 1 in §1.3). The supply of services before and during COVID-19 was
the same, so it was applied without changes.

Simply speaking, the transit assignment engine maps trip demand to
transit service supply. In our case study, this means assigning a passenger
to a train trip leg. Trip demand captured by smart cards, including tap-
on and tap-off data with location GPS coordinates and timestamp, is used
by the Shortest Path Router to calculate a set of time-dependent shortest
paths for each travelling passenger using the classic Dijkstra algorithm. Each
path represents one passenger trip, which may include multiple legs since
passengers may transfer between services. Next, the paths are passed to
the Trip/Vehicle Assignment Service module, where an attempt is made to
assign each leg of the trip to a transit service vehicle (for example, a train)
with some prior specified capacity and current occupancy. Transit service
vehicles operate in accordance with a pre-defined schedule. The start time
of the passenger trip needs to be matched with the scheduled transit vehicle
operation. If a passenger cannot be assigned to a vehicle on a particular
leg due to a vehicle capacity constraint, the next shortest path is requested
from the Shortest Path Router and the assignment process is repeated until
a feasible trip/vehicle assignment is found. Once all the feasible paths are
defined and assigned to the vehicles, they are simulated in an agent-based
environment. As the simulation is ongoing, the passengers are tracked and
detailed dynamic outputs are collected for every agent (that is, a passenger),
link (a link is the part of the trip between two consecutive stops/stations),
stop/station, service vehicle, service line, and the whole network. Every
time a passenger finishes their trip, a Disease Spread Model is triggered and
this passenger is assigned a “status” corresponding with its outcome (that
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is, during their trip, a passenger was infected or not). The information
about new infections is sent to the Visualization Platform to be displayed
on a dashboard. At the end of every simulated day and at the end of the
simulation horizon, the total number of new infections is calculated and
reported for final evaluation.

When it comes to the implementation of the transit assignment engine,
traditional Java-based services backed by a relational database for transit
assignment and trip event processing were developed, and an open source
multi-modal trip planning library, Open Trip Planner (OTP), was used for
the routing step in transit assignment. OTP was utilised as it includes im-
plementations of both routing approaches (graph and adjacency list). It
is robust and performs efficiently. In addition, a front-end was built using
the modern JavaScript frameworks Vue.js, D3.js, and P5.js to visualise net-
work activity at the vehicle level and provide aggregate origin-destination
information in a dashboard format.

1.2 Transmission model on trains

At its core, the disease spread model on public transport network provides a
probability of becoming infected for each susceptible passenger, based on the
current and past travel of infectious passengers in the same spatial area. The
model uses a number of simplifying assumptions, the most important being
that we ignore any age-based effects (all agents are identical) and we assume
homogeneity of mixing within the spatial area considered. We assume a half-
carriage spatial area for our model, largely due to the upper and lower deck
structure of the Sydney train carriages (Waratah design). Subsequently,
our homogeneity of mixing assumptions means that passengers are equally
divided amongst half-carriages of a train, and any spatial effects within a
half-carriage are ignored.

The disease spread model for COVID-19 on trains has two transmission
pathways, with quite different modelling approaches. The first pathway
is direct (that is, person-to-person) transmission, for which we used the
empirical attack rate on trains determined by Hu et al. [19] as a function
of shared ride time (that is, exposure time). The second pathway is due to
fomite (that is, person-to-surface-to-person) transmission, for which we use
a more mechanistic approach, calibrated to recover the attack rate reported
by Hu et al. [19]. These transmission pathways are combined into a single
probability of infection for each susceptible passenger.

The overall probability of a susceptible passenger being infected from a
single trip (P (S → E)) is a combination of the probability of transmission
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(pi) from each infectious passenger (i), for each of the n infectious passengers
the susceptible person has shared a half-carriage with, and from the proba-
bility of transmission from the half-carriage surfaces (pc, which depends on
i). The overall probability of a susceptible passenger becoming exposed as
a result of their travel is the standard probability

P (S → E) = 1− (1− pc)Πn
i (1− pi). (1)

Both probabilities (pi and pc) are dependent on the mask wearing status of
each agent of interest (that is, the susceptible being considered, and each of
the infectious passengers).

The direct transmission probability, pi, is based on the overall attack
rate on a train found by Hu et al. [19]. It takes into account shared travel
time (∆ti for travel time with infectious passenger i) but not relative seat
location, giving a probability of

pi0 =
0.121 + 0.022∆t2i

100
, (2)

where the regression by Hu et al. [19] was for joint travel times of 8 hours
or less. Note that Hu et al. [19] reported the attack rate as a percentage,
which is why the probability has a different denominator here. We modify
the probability pi to take into account a number of factors, including: fs
for the proportion of the virus contributing to fomite transmission (ps); mi

for the mask wearing status of each infectious passenger (mi = 1 for those
wearing a mask and 0 otherwise); and ms for the mask wearing status of
the susceptible passenger being considered (ms). Subsequently, the direct
transmission probability from infectious passenger pi is given by

pi(ms,mi) = (1−msfs)(1− ps0(mi)) min(pmax, pi0). (3)

The min(pmax, pi0) term is to ensure the probability stays within a sensi-
ble range in the event of the remote possibility of passengers sharing an
especially long trip.

To calibrate the model, we relied on evidence reported in the literature.
How mask wearing affects a susceptible passenger’s probability of infection,
through fs, was calibrated to obtain the Odds Ratio of 0.22 reported by
Wang et al., 2020 [38]. Based on the work of Tang et al.2020 [34] and Chu
et al., 2020 [10], we use pmax = 0.16.

Some (ps(mi)) of the virus shed by an infectious passenger who enters
a half-carriage will be deposited on surfaces. How much depends on the
mask wearing status of the infectious individual (mi). We base our model of
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the amount of deposited virus on the work by Atkinson and Wein, 2008 [1],
and the estimates of decay on surfaces by Riddell et al. [31]. Due to these
processes, the fomite transmission is modelled by considering the aggregated
effect of infectious passengers on the half-carriage over time, and then we
convert this into a probability of infection (pc) via a standard dose response
model. The overall probability of infection from surfaces (that is, the dose
response) is given by

pc(ms) = pmax

[
1− exp

(
−Ds(ms)

k

)]
, (4)

where k is the response characteristic to an effective dose of COVID-19,
which from Zhang and Wang, 2020 [44], is k = 6.19 × 104; and the dose
(Ds(ms)) is the effect of the aggregated concentration of the virus on sur-
faces, taking into account the virus decay. The virus decay value comes from
fitting an exponential decay model to the observed data reported by Riddell
et al. [31].

The effective viral dose is given by

Ds(ms) = α(ms)
∑
`

[
ps0BĜ`τ` +

1

µs

(
C`0 − ps0BĜ`

)
(1− exp(−µsτ`))

]
,

(5)

where C`0 is the concentration on the carriage surfaces at the beginning of a
link `, B and α(ms) are aggregations of constants, Ĝ` is the effective number
of un-masked infectious passengers on the half-carriage during a link `, τ` is
the duration of a link ` (note ∆ti =

∑
` τ`), and µs = 0.04322

24 is the surface
decay rate of the virus from Riddell et al., 2020 [31]. More specifically, B =

2× 105

60µs
is the aggregation of constants describing the surface concentration

and dose from Zhang and Wang, 2020 [44]. The proportional constant for
effective dose of the virus from a surface is given by the assumed functional
form

α(ms) = (1−msfs)α0, (6)

where α0 = 0.28 is the proportional constant for effective dose of virus from
a surface in the absence of face masks, calibrated to obtain the attack rate
from Hu et al., 2020 [19] (Equation (2)).

Finally, the concentration of virus on the half-carriage surfaces at the
end of a link j is given by

Cj = ps0BĜj

(
Cj0 − ps0BĜ`

)
exp (−µsτj) , (7)
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where ps0 is the proportion of virus shed by un-masked infectious passen-
gers that ends up on surfaces. The value of ps0 is based on evidence that
fomite transmission is a relatively unlikely route [14, 17, 26, 35], with Fer-
retti et al. [14] finding a speculative estimate of 10% of transmission being
attributable to fomite transmission. We take this to be a rough estimate
that ps0 ≈ 10%.

1.3 Seeding

Our primary disease spread model, as outlined in § 1.2, only considers trans-
mission on the public transport network (and is specifically calibrated to
trains). Furthermore, we do not track individuals between trips, so disease
progression cannot be explicitly modelled. To overcome these limitations,
and to keep the numbers of infectious passengers travelling on trains identical
across simulations for comparability, we use a deterministic compartmental
model to approximate the transmission dynamics in the general community.

We use the standard susceptible-exposed-infectious-recovered progres-
sion structure, with the exposed and infectious compartments repeated to
better account for the distribution of time spent in those states (see, for
example, [20]). We refer to this as an “SEEIIR” model for short.

As the transmission model is focused on, and calibrated to, transmission
that is expected to occur on a train, it is necessary to consider community-
wide transmission and how that will impact the transmission on a vehicle
space unit (in our case, a space unit is a half-carriage). To this end, a simple
population-level transmission model was used to seed the expected numbers
of cases into the train network each day in the simulated time horizon (that
is, 7 days). This model, “SEEIIR”, follows a susceptible-exposed-infectious-
recovered structure where: S is for susceptible, E for exposed (infected
but not yet able to infect others), I for infectious (able to infect others),
and R for recovered and immune. To better align with our epidemiological
understanding of disease progression and to account for the distribution
of time being spent “exposed” or “infectious” being more like an Erlang
rather than an exponential distribution, we repeat those two compartments
as shown in Figure 2.

The dynamics of transmission are then governed by the following system
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Figure 2: Community-wide “SEEIIR” transmission model, with the common
susceptible-exposed-infectious-recovered structure. The repeated compart-
ments better capture disease progression.

of ordinary differential equations (ODEs)

dS

dt
= −βS(t)(I1(t) + I2(t))

N
, (8)

dE1

dt
=
βS(t)(I1(t) + I2(t))

N
− 2σE1(t), (9)

dE2

dt
= 2σE1(t)− 2σE2(t), (10)

dI1
dt

= 2σE2(t)− 2γI1(t), (11)

dI2
dt

= 2γI1(t)− 2γI2(t), (12)

dR

dt
= 2γI2(t), (13)

where the total population N = S + E1 + E2 + I1 + I2 + R is constant,
β = 2.5γ is the transmission rate (that is, the value set to recover the
expected R0 = 2.5) [6, 23], 1/σ = 3 days is the average latent period (time
from being infected to being able to infect others) [24, 46], and 1/γ = 13
days is the average infectious period [24]. This model was implemented
in Python 3.8, using the packages “matplotlib 3.3.2”, “scipy 1.5.2”, and
“numpy 1.19.2”, and numerical solutions used the “scipy.integrate.solve ivp”
integrator to solve the System of ODEs.

The model makes a number of simplifying assumptions, including: (1)
everyone infected ends up with immunity; (2) a constant proportion of the
infectious passengers travel as per before COVID-19; (3) super-infections are
ignored; and (4) any interventions are ignored (at least explicitly). However,
many of these limitations are strongly mitigated by the short time periods
being considered in the full transport simulation (that is, the 7-day simula-
tion horizon). We also do not explicitly consider asymptomatic infections,
but this partially accounts for our assumption ignoring isolation and self-
isolation. That is, people are less likely to self-isolate when asymptomatic.
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As discussed in the paper, the starting point for the seeding process
is 2000 infectious cases. This initial number is used in the SEEIIR model,
which is based on the population of Sydney and a basic reproduction number
of 2.5. We used estimates of the proportion of the population that commutes
via public transport (approximately 20%, considering 2016, 2011, and 2006
Census records), and the proportion of commuters who use trains (approx-
imately 50.9%), to arrive at an estimate of 10% of the population using
trains in Sydney. This, combined with the estimate of 2000 initial infectious
in the Sydney population of 5.73 million in 2019, resulted in the expected
number of infectious individuals in the community, determined by running
the Python implementation of Equations (8)–(13), and those travelling by
train each day as reported in Table 1.

Table 1: Numbers of infectious in the community and estimated seeds for the
simulation horizon (that is, 7 days) for the full train simulation modelling,
rounded to the nearest integer.

Day Total infectious in
community

Infectious train pas-
sengers

Total train passen-
gers

0 2000 200 1340708

1 1999 200 1386593

2 2044 204 1391588

3 2152 215 1409584

4 2312 231 1373788

5 2512 251 675665

6 2743 274 583467

Table 2 provides an overview of all the modelling parameters.

1.4 Face mask wearing scenarios

To determine the effectiveness of mask wearing, we had to answer two ques-
tions: (1) how mask wearing affects infectious passengers’ shedding; and (2)
how mask wearing affects susceptible passengers’ probability of infection.
The mask wearing status is then randomly conferred on passengers to re-
cover the desired proportion of adherence to advice, with the effectiveness
applied as appropriate and as follows.

To answer the first question, we use the filtration efficacy of a two-layer
cloth mask described in Howard et al., 2020 [18]. This was found to provide
an 88-94% reduction in infection particle load and 80-90% filtration efficacy.
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Table 2: Modelling parameters.

Symbol Description Value Source

α0 Proportional constant for ef-
fective dose of virus from a
surface, in the absence of
masks

0.0655 Calibrated to ob-
tain attack rate
from Hu et al.[19]

α(ms) Proportional constant for ef-
fective dose of the virus from
a surface

(1 −
msfs)α0

Assumed func-
tional form

B Aggregation of constants de-
scribing the surface concen-
tration and dose

2× 105

60µs
[44]

fi How mask wearing affects
infectious individuals’ viral
shedding

0.1 [18]

fs How mask wearing affects sus-
ceptible individuals’ probabil-
ity of infection

0.8 Calibrated to ob-
tain the Odds Ra-
tion of 0.22 as re-
ported by Wang
et al.[38]

k Response characteristic to an
effective dose of COVID-19

6.19× 104 [44]

pmax Maximum probability of in-
fection

0.16 [10, 34]

ps0 Proportion of virus shed by
infectious individuals that
ends up on surfaces when no
mask is worn

0.1 Value based on
evidence fomite
transmission is
the relatively
unlikely route
[14, 17, 26, 35]

µs Decay rate of virus on the sur-
face(s)

0.04322
24 per

hour
Exponential
decay model cal-
ibrated to data
from Riddell et
al. [31]

In our modelling, we use 90% as it is within both of these bounds, and
reduction in infection particle load is arguably the most important aspect.
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Due to our one minus effect model structure, this gives us fi = 0.1.
To answer the second question, we use the work by Wang et al., 2020

[38] that identified an odds ratio of 0.22 for wearing a mask, compared to
not wearing one. Its relationship to our effectiveness parameter (fs) is not
immediately apparent, and so we calibrated the value to recover the odds
ratio from our model,

OR =

Number of infections wearing a mask

not infected wearing a mask
infections not wearing a mask

not infected not wearing a mask

. (14)

We know that the expected number of cases will be

E = P (S → E)S0. (15)

Let the subscript m denote mask wearing and n no-masks, then the odds
ratio equation becomes

OR =

EmS0
S0 − EmS0

En
S0 − EnS0

(16)

= S0

P (S → E)m
1− P (S → E)m
P (S → E)n

1− P (S → E)n

. (17)

The RHS is implicitly a function of fs, and hence we can numerically find
when the LHS=RHS. We used the scipy.optimize.fsolve and a Python 3.8
implementation of our model to determine how fs varies with different ps0
values and different numbers of infectious passengers, I0, shown in Figure 3.
Given the tight range of fs ∈ [0.78, 0.84], we have chosen fs = 0.8.

2 Sensitivity analysis

Sensitivity analyses are key to understanding how assumptions affect out-
comes and recommendations. In the main paper, we covered the sensitivity
analysis of how our results are affected by the proportion of virus shed that
contributes to fomite transmission (ps0) versus direct transmission (1−ps0).
Here, we explore how sensitive the calibration of parameter values is to
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Figure 3: Sensitivity of the calibration of the effect of mask wearing by
susceptible individuals, fs, to the proportion of virus shed contributing to
fomite transmission, ps0, for different numbers of infectious passengers, I0.
Note that this calibration is insensitive to the number of infectious passen-
gers on the half-carriage, I0, with the lines completely overlapping.

variables of interest and determine the number of repeats required for con-
sistent variance given the highly stochastic nature of the processes we are
simulating.

2.1 Dose response calibration

As discussed in §1.2, we have assumed that the Hu et al. [19] attack rate is
the ground truth, and have calibrated the fomite model accordingly. Here
we show how sensitive those calibrations are to the proportion of virus shed
contributing to fomite transmission (ps0), the number of infectious passen-
gers (I0), and the duration of the mutual link (τ`).

Figure 4 depicts the sum of squared error between a simple simula-
tion of 50 susceptible passengers on a half-carriage for times of ∆ti =
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[0.1, 0.2, 0.4, 0.6, 0.7, 0.95, 1.4] and the Hu et al. [19] attack rate, as a func-
tion of the dose response constant α0. The travel times used reflect the
distribution of the available data for the Sydney network. The minimum
sum of squared error for α0 for each of the different numbers of infectious
passengers is provided in Table 3. Subsequently, we use α0 = 0.28 for all
simulations.

Figure 4: Sensitivity of the calibration of the dose response constant, α0,
to the proportion of virus shed contributing to fomite transmission, ps0, for
different numbers of infectious passengers, I0. The dashed horizontal line is
the value of α0 used in all simulations presented in the paper.

Figure 5 depicts how the calibration of the dose response constant, α0, is
affected by the proportion of virus shed contributing to fomite transmission,
ps0. It shows that, with the exception of ps0 = 0.0 (that is, all virus shed
contributes to direct transmission), the calibration is within a small range,
with α0 ∈ [0.27, 0.33]. The α0 = 0.28 value used throughout is depicted
by the horizontal dashed line, per the minimisation depicted in Figure 4.
This aligns well with the smaller values of ps0 expected to reflect actual
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Table 3: Optimal value of the dose response constant, α0, to minimise the
sum of squared error between number of infected and the Hu et al. [19] attack
rate for different numbers of infectious passengers on the half-carriage with
50 susceptible passengers.

Total infectious passengers Optimal α0

20 0.32

10 0.29

5 0.28

2 0.27

1 0.27

COVID-19 transmission.

2.2 Number of repeats required to capture stochastic vari-
ance

Given the number of stochastic processes captured in our simulation, it is
important to determine the minimum number of repeat simulations required
to consistently capture the variance. Figure 6 depicts the average and 95%
confidence intervals from different numbers of repeat simulations (that is,
the whiskers represent 95% of the simulations). Here, the leftmost whisker
plot incorporates the simulations from the runs represented in the rightmost
whisker plot. So the “20” repeats includes all of the simulations from the
“10”, the “30” include all of the simulations from the “20”, and so forth. We
conclude from this that 60 repeats are sufficient to capture the stochastic
variation. Therefore, the 100–200 repeats we have used throughout are
sufficient to capture the stochastic variation.
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Figure 5: Sensitivity of the calibration of the dose response constant, α0,
to the proportion of virus shed contributing to fomite transmission, ps0, for
different numbers of infectious passengers, I0. The dashed horizontal line is
the value of α0 used in all simulations presented in the paper.

[a]
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[b]

[c]

[d]
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[e]

[f]

Figure 6: Effect of simulation number on stochastic variance for [a] baseline,
[b] Mask 25, [c] Mask 50, [d] Mask 75, [e] Mask 80, and [f] Mask 100.
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