Additional file 1: Missing data exploration and the list of variables included in the imputation model.

Missing data

Table S1: Missing frequency in time use data

Nr of not-filledin	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
Nr of participants	1576	14	12	10	8	4	5	3	6	3	3	1	2	1	1	6	3	49

Table S2: Missing frequency by diary versions. Version 1 is for children less than 13, version 2 is for participants from 13 to 65 and version 3 for participants older than 65.

Nr of not-filledin	Version 1	Version 2	Version 3
0	283	1012	281
$1+$	13	90	28

Figure S1: Missing data by time slots

Variables included in the imputation model

Table S3: Variables included in the imputation model

Nr	Variable name	Variable labels	Type	Value labels
1.	participant_age	Age of survey participants	Integer	
2.	participant_gender	Gender of survey participants	String 1 char	M: male F: female
3.	dayofweek	Day of the week of filling in the diary	Integer	0: Sunday 1: Monday 2: Tuesday 3: Wednesday 4: Thursday 5: Friday 6 : Saturday
4.	holiday	Was the diary filled in during a public or school holiday?	String 1 char	$\begin{aligned} & \text { Y: Yes } \\ & \text { N: No } \end{aligned}$
5.	time_use_location_1	Location where you spent the most time between: 5-8h	Integer	```1: home kinder-garden school workplace transport family leisure other 9: missing```
6.	time_use_location_2	Location where you spent the most time between: 9-10h	Integer	As above
7.	time_use_location_3	Location where you spent the most time between: 10-11h	Integer	As above
8.	time_use_location_4	Location where you spent the most time between: 11-12h	Integer	As above
9.	time_use_location_5	Location where you spent the most time between: 12-13h	Integer	As above
10.	time_use_location_6	Location where you spent the most time between: 13-14h	Integer	As above
11.	time_use_location_7	Location where you spent the most time between: 14-15h	Integer	As above
12.	time_use_location_8	Location where you spent the most time between: 15-16h	Integer	As above
13.	time_use_location_9	Location where you spent the most time between: 16-17h	Integer	As above
14.	time_use_location_10	Location where you spent the most time between: 17-18h	Integer	As above
15.	time_use_location_11	Location where you spent the most time between: 18-19h	Integer	As above
16.	time_use_location_12	Location where you spent the most time between: 19-20h	Integer	As above
17.	time_use_location_13	Location where you spent the most time between: 20-22h	Integer	As above
18.	time_use_location_14	Location where you spent the most time between: 22-24h	Integer	As above
19.	time_use_location_15	Location where you spent the most time between: 24-02h	Integer	As above
20.	time_use_location_16	Location where you spent the most time between: 02-05h	Integer	As above
21.	time_use_location_17	Location where you spent the most time between: 05-08h	Integer	As above
22.	hh_size	Household size including participants	Integer	

Calculation of Confidence Interval (CI)

MI is used for the dataset $\mathcal{D}=\left\{\mathcal{D}^{o b s}, \mathcal{D}^{m i s}\right\}$ where the data matrix consist of both observed and missing values. For each of the \mathcal{M} imputed datasets $\mathcal{D}_{m}, \mathcal{B}$ bootstrap samples are drawn which yields $\mathcal{M} \times \mathcal{B}$ datasets $\mathcal{D}_{m, b}^{*}$ where $b=1, \ldots, \mathcal{B}$ and $m=1, \ldots, \mathcal{M}$. In each of these datasets, the parameter of interest is estimated, $\hat{\theta}_{m, b}^{*}$. The pooled set of ordered estimates $\Theta_{M B}^{*}=\left\{\hat{\theta}_{m, b}^{*} ; b=1, . ., \mathcal{B} ; m=1, \ldots ., \mathcal{M}\right\}$ is used to construct the $1-2 \alpha \%$ confidence interval for θ [4]:

$$
\begin{equation*}
\left[\hat{\theta}_{\text {lower }} ; \hat{\theta}_{\text {upper }}\right]=\left[\hat{\theta}_{M B}^{*, \alpha} ; \hat{\theta}_{M B}^{*, 1-\alpha}\right] \tag{1}
\end{equation*}
$$

Where $\hat{\theta}_{M B}^{*, \alpha}$ is the α percentile of the ordered estimates $\Theta_{M B}^{*}$

