
Additional file 3: models

Single-step model
Model description

The single-step model considers antibiotic resistance as a binary characteristic of N. gonorrhoeae with regards
to a specific antibiotic. We simply use a SIS-type model (susceptible - infectious - susceptible) with two
infectious compartments: I1 for infected with a wild-type bacteria and I2 for infected with a resistant bacteria.
The model can be expressed with the following system of ordinary differential equations (see also Figure 2
from the paper):

dS

dt
= −βS(I1 + I2) + I1[(1 − pt)τ + ptτ(1 − µ) + ν] + I2[(1 − pt)τ + ptτϵ + ν]

dI1

dt
= βSI1 − I1[(1 − pt)τ + ptτ(1 − µ) + ν] − I1pτµ

dI2

dt
= βSI2 − I2[(1 − pt)τ + ptτϵ + ν]

Susceptible individuals become infected with either type of infection k ∈ {1, 2} according to a force of
infection βSIk. Infected individuals recover spontaneously at rate ν, or through treatment. Here we introduce
prescription data under the form of the forcing function p(t), representing the probability that a prescription
at time t actually includes the antibiotic of interest. If the antibiotic of interest is prescribed (probability
p(t)) then the effect of treatment differs according to the resistance status. Infections by wild-type bacteria
(compartment I1) can either recover (with probability 1 − µ) or develop resistance in one single step (with
probability µ). For infections by resistant-type bacteria (compartment I2) recovery through treatment occurs
with a lower efficacy ϵ ∈ [0, 1]. If another antibiotic is prescribed (probability 1 − p(t)), recovery through
treatment occurs at the same rate τ for compartments I1 and I2.

Reparameterization of β

We assume an initial situation where the prevalence of N. gonorrhoeae is at endemic equilibrium. To do that,
we reparameterize β as a function of the other parameters, and of the prevalence at endemic equilibrium I∗.

In a first step, we retrieve the formula of R0 in the single-step model using the next generation matrix
method (Diekmann et al, 1990; Van den Driessche and Watmough, 2002). This implies the computation of
the infection matrix F :

F =
[
β 0
0 β

]
,

and of the migration matrix V :

V =
[
τ + ν 0
−µτ τϵ + ν

]
.

We can then find R0 as the largest eigenvalue of the next generation matrix FV −1, which results in:

R0 = β

ν + τ
.

In a second step, we consider that the prevalence at endemic equilibrium I∗ is related to R0 through:

I∗ = 1 − 1
R0

.
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We can now express the transmission parameter β as function of I∗ and the other parameters:

β = ν + τ

1 − I∗ .

We thus replace β by this formula in the model, ensuring that the model will start at endemic equilibrium.
From now, we treat I∗ as a parameter, with a normal prior distribution based on estimates of prevalence
ranging between 0.16% and 0.38% in HMW and between 1.19% and 2.79% in MSM (Fingerhuth et al. 2016).

Joint model and inference

In total, this model describes the population-level dynamics of resistance development in relation to antibiotic
usage in a population with five parameters: {I∗, ν, τ, µ, ϵ}. In addition, we consider the initial conditions of
resistance in the population, that we treat as another parameter ρ.

To support identifiability, we expand this framework to jointly model the development of resistance in HMW
(i = 1) and MSM (i = 2). This takes advantage of the fact that some parameters may be assume to have
common values in these two groups, such as the recovery rate ν, the probability of mutation given treatment
µ and the treatment efficacy ϵ. The other parameters are left independent (τi, I∗

i and
rhoi) between the two groups, except for the constraint that τ must be higher for MSM than for HMW
(implemented using the ordered data type in Stan).

We estimate all parameters by fitting the model to resistance data using following likelihood:

Pr(data|I∗
i , ν, τi, µ, ϵ, ρi, κ) =

∏
t,i

beta-binomial
(

nt,i,kt,i

∣∣∣∣κ I2,i(t)
I1,i(t) + I2,i(t)

, κ

(
1 − I2,i(t)

I1,i(t) + I2,i(t)

))
where kt,i is the number of isolates with resistance at time t in population i, nt,i is the sample size, and κ is
an overdispersion parameter.

Prior distributions

We selected the following weakly-informative prior distributions:

ν ∼ exponential(1)

τi ∼ log-normal(0, 1)

µ ∼ beta(1, 1000)

ϵ ∼ beta(1, 1)

ρi ∼ beta(1, 1)

κ ∼ 2 + exponential(0.01)

These choices were made by considering the range of outcomes implied in prior predictive checks (Gabry et
al. 2019). Indeed, the priors implied that the resistance levels can vary basically between 0 and 100% over
the period 2010 to 2050. The following figure shows 2,000 trajectories implied by the chosen priors:
load("models/samples_2022-05-17/S_binary_grasp_azithro_2022-05-17.Rdata")
plot_summary_prior(SIM_binary_grasp_azithro,lim=2050,colmic = "Greys")
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Choosing a “flat” prior on µ (e.g. beta(1, 1)) would have resulted in greatly favoring scenarios with a very
quick increase of resistance, as shown in the following figure:
load("models/samples_2022-05-17/S_binary_grasp_azithro_flat_2022-05-17.Rdata")
plot_summary_prior(SIM_binary_grasp_azithro_flat,lim=2050,colmic = "Greys")
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We argue that using a prior on µ that favors smaller values allows for a wider range of scenarios, and is thus
more adequate that the “flat” priors.

Implementation

We implemented this model in Stan, and conduct parameter inference with Hamiltonian Monte Carlo using
Stan default NUTS algorithm. We assessed the quality of the inference by applying diagnosis tools (divergent
transitions, tree depth, E-BFMI), and by observing the trace plots and the posterior predictive check plots.
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The model code is available in models/binary_model.stan. The R function to format the data and actually
run inference is available in fit_binary_model.R. The application to GRASP data is done in main-binary.R.

Multi-step model
Model description

We consider an alternative multi-step model that treats resistance acquisition as a multi-step, cumulative
process. The model follows a similar structure as the single-step model but includes multiple infected
compartments {I1, . . . , Ik} instead of two. These K compartments represent increasing levels of antibiotic
resistance and correspond to the K MIC classes reported in GRASP (e.g., K = 8 in the case of ceftriaxone):

dS

dt
= −βS

K∑
k=1

Ik + ptτ(1 − µ)
K−1∑
k=1

ϵkIk + ptτϵKIK + (1 − pt)τ
K∑

k=1
Ik + ν

K∑
k=1

Ik

dI1

dt
= βSI1 − ptτµI1 − ptτ(1 − µ)ϵ1I1 − (1 − pt)τI1 − νI1

dIk∈2..K−1

dt
= βSIk + ptτµIk−1 − ptτµIk − ptτ(1 − µ)ϵkIk − (1 − pt)τIk − νIk;

dIK

dt
= βSIk + ptτµIK−1 − ptτϵKIK − (1 − pt)τIK − νIK ;

This model relies upon two central assumptions. First, the probability of developing one more step of resistance
upon treatment µ is the same for every class. Second, increasing levels of AMR lead to a linear decrease in
treatment efficacy, with a linear interpolation between ϵ1 (fixed to 100%) and ϵK ∈ [0, 1] (estimated):

ϵk = 1 − k − 1
(K − 1)(1 − ϵK)

A progressive decrease of treatment efficacy with MIC is compatible with the pharmacodynamical concept of
a “period with the free drug level above MIC’ ’ necessary to achieve treatment efficacy [?]. This second model
is also based on five parameters: {β, ν, τ, µ, ϵK}.

Joint model and inference

We use the same reparameterization of β in terms of the other parameters and the prevalence at endemic
equilibrium I∗. The initial conditions of resistance are now modelled by a simplex vector of K elements ρ. We
also jointly model the growth of MIC in HMW (i = 1) and MSM (i = 2), with the same common parameters
ν, µ and ϵK .

We estimate all parameters by fitting the model to resistance data using following likelihood:

Pr(data|I∗
i , ν, τi, µ, ϵK , ρi, ϕ) =

∏
t,i

dirichlet-multinomial
(
kt,i

∣∣∣∣ϕ Ik,i(t)∑
k Ik,i(t)

)
where kt,i is the number of isolates within each MIC class at time t and in population i, and ϕ is an
overdispersion parameter.

Prior distributions

We selected the following weakly-informative prior distributions:

ν ∼ exponential(1)

τi ∼ log-normal(0, 1)

µ ∼ beta(1, 100)
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ϵK ∼ beta(1, 1)

ρi ∼ dirichlet(1, ..., 1)

ϕ ∼ exponential(0.01)

The slightly larger prior on µ is justified by the fact that the probability of developing one more step of
resistance upon treatment has to be larger than the probability of developing full resistance directly. We
validate our choice of priors with prior predictive checks:
load("models/samples_2022-05-17/S_multistep_grasp_azithro_2022-05-17.Rdata")
plot_summary_prior2(SIM_multistep_grasp_azithro,lim=2050,colmic = "Greys")
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We see that the chosen priors allow for a large range of scenarios.

Implementation

We also implemented this model in Stan and use the same inference procedure. The model code is available in
models/multistep_model.stan. The R function to format the data and actually run inference is available
in fit_multistep_model.R. The application to GRASP data is done in main-multistep.R.

Sensitivity analyses
Removing data from 2009-2010

We considered a sensitivity analysis where data from 2009 and 2010 was removed. The objective was to
evaluate the impact of the temporary rise of the number of observed cases of high resistance in these years,
that can be attributed to the international circulation of a multi-drug resistance clone. This was simply
implemented by removing observations from 2009 and 2012 from the data.

Increasing prevalence

Another sensitivity analysis aimed at relaxing our hypotheses regarding the prevalence of N. gonorrhoeae
infections. In the main analysis, we assumed an initial situation where the prevalence of N. gonorrhoeae is
at endemic equilibrium, and reparameterized β as a function of the other parameters. We now consider a
situation where the prevalence of N. gonorrhoeae is steadily rising over time. This is implemented by adding a
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time-dependent component to β, so that it starts at the pre-specified prevalence, and rises linearly throughout
the years:

β′(t) = β × (1 + ζt)

where t is the number of years since initiation. This is implemented in models binary_modelB.stan and
multistep_modelB.stan. We considered three scenarios with the parameter ζ fixed to 0.001, 0.005 or 0.01,
corresponding to increasing slopes in the rise of prevalence.
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