
Supplementary material:
A semiautomatic tool for prostate segmentation in radio-
therapy treatment planning

Jörn Schulz∗1, Stein Olav Skrøvseth2 and Fred Godtliebsen1

1Department of Mathematics and Statistics, University of Tromsø, 9037 Tromsø, Norway
2Norwegian Centre for Integrated Care and Telemedicine, University Hospital of North Norway, 9038 Tromsø, Norway

Email: Jörn Schulz∗- jorn.schulz@uit.no; Stein Olav Skrøvseth - stein.olav.skrovseth@telemed.no; Fred Godtliebsen -

fred.godtliebsen@uit.no;

∗Corresponding author

1 Data and relative coordinate systems

In this section, the volume data, particular on the basis of the DICOM data structure and the

corresponding relative coordinate systems are discussed.

1.1 Basic principles

Rotations in the three dimensional space can be represented by the axis–angle representation [1]

where an axis c ∈ S2 is a direction that is left fixed by the rotation and angle θ is the amount

of rotation. The pair (c, θ) represents a rotation in 3-space. As a convention, the orientation of

the angle is determined by the right-hand rule, and a vector is a column vector. A vector v ∈ R3

rotated by (c, θ) can be obtained by pre-multiplication of the corresponding rotation matrix

R(c, θ) = I3 + sin θ[c]× + (1− cos θ)(cc′ − I3), (1)

where [c]× is the cross product matrix, so that [c]×x = c× x for any x ∈ R3.

Definition 1 (Extended map). The map ext maps a vector v ∈ Rn from a Cartesian coordinate

system to a vector (v, τ)T ∈ Rn×{0, 1} in an extended coordinate system. Furthermore we denote

with ext−1 the related inverse map.



1.2 Volume information

We obtain from Magnetic Resonance (MR) tomography a discrete volume information of a continu-

ous part of the lower male abdomen which contains the prostate. The discrete volume information

of a patient data set is given by I1× I2×H voxels on a regular grid in three dimensional space. We

describe a voxel by a cube with middle point (x, y, z) and length lx, width ly and height lz. Other

approaches are possible too. An easy model is to assume the value of a voxel is given by the mean

intensity about the volume with an overlap in x-y-direction and small gaps in z-direction, i.e., we

assume

V (i, h) = µ+ εih where εih ∼ N(0, σ2) iid

and i = (i1, i2) ∈ {1, . . . , I1}×{1, . . . , I2}, h ∈ {1, . . . ,H}. A more complex approach could up-rate

the central areas of a voxel. The value of a voxel (i.e. the mean intensity) may describe different

properties.

1.3 DICOM files and coordinate system

The Digital Imaging and Communications in Medicine (DICOM) file is a common standard con-

tainer file used particularly in medical image processing. The file structure consists of a header part

containing general data information and an image information part which contains mean intensities

of the voxels. DICOM files uses a right handed Left-Posterior-Head (LPH) coordinate system. In

a right handed coordinate system the x-axis is defined by the the thumb, the y-axis by the first

finger and the z-axis by the second finger of the right hand. The coordinate system is related to

the patient and not to the scanner. In a DICOM data set usually one file is defined per slice. This

is the case in our data sets too. In terms of image processing, the most important variables in each

file are

Rows (scalar) defines the number I1 of voxels in row direction.

Columns (scalar) defines the number I2 of voxels in column direction.

ImagePositionPatient (IPP) (3× 1 vector) defines the coordinate of center of top left voxel in

a slice.
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ImageOrientationPatient (IOP) (6× 1 vector) defines the unit vector along an image row and

the unit vector along a column.

PixelSpacing (2 × 1 vector) which determine at first row spacing then column spacing, i.e.

PixelSpacing = (lx, ly)
T .

These five variables define uniquely a slice in R3. Figure 1 visualizes some key parameters for a

slice. The two variables PixelSpacing and IPP are defined in millimeter whereas IOP defines two

unit vectors. Note, the variable SliceThickness defined in the DICOM file header may not be equal

to the slice distance between two neighbor slices given by ImagePositionPatient because of small

gaps in the z-direction as mentioned in the model description above.

bc
IPP

PixelSpaing(1)

PixelSpaing(2)

IOP(1:3)

IOP(4:6)

Figure 1: DICOM parameter definitions for a slice.

We have two different kinds of coordinate information, namely a patient based coordinate

system (PCS) and an image based coordinate system (ICS). The ICS defines the discrete volume

information V (i1, i2, h) on a regular grid in the three dimensional space with grid points (x, y, z).

Therefore, we can also write V (x, y, z) instead of V (i1, i2, h) and allocate the voxel indices (i1, i2, h)

to volume coordinates (x, y, z) ∈ R3. V (x, y, z) defines a voxel in PCS.

The PCS is defined by the above 5 variables, where IOP gives the directional cosines. We want to

find a transformation matrix M between the two coordinate systems ICS and PCS. Without loss of

generality we describe the transformation in an extended coordinate system (see Definition 1). The

transformation matrix consists of rotation, translation and scaling whereas rotation is given by IOP,

translation by IPP and scaling by PixelSpacing and IPP. We assume that IOP and PixelSpacing

are equal between all slices H in a training data set. Furthermore we assume that the slices are
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sorted and choose our global IPP candidate from the first slice.

The rotation matrix is defined by

RDCM =

(
dr dc ds 03
0 0 0 1

)
(2)

where 03 = (0, 0, 0)T , dr = (drx, dry, drz)
T = IOP (1 : 3) defines the directional cosines in row

direction, dc = (dcx, dcy, dcz)
T = IOP (4 : 6) the directional cosines in column direction and

ds = (dsx, dsy, dsz)
T = dr × dc the directional cosines in slice direction whereas ds is defined by

the cross product of dr and dc.

The scaling matrix is defined by

SDCM =

(
scxe1 scye2 scze3 03

0 0 0 1

)
(3)

with sc = (scx, scy, scz)
T = ext−1(diag(SDCM )) and ei is the 3×1 column vector with all elements

being zeros except that the ith element is one. As mentioned above scx = 1
lx

and scy = 1
ly

are

defined by PixelSpacing whereas scz is defined by the distance of IPP between two neighbor slices,

e.g. the first and the second slice. Remember, we have assumed equidistant slices in a data set.

The translation matrix is defined by

Tt =

(
e1 e2 e3 t
0 0 0 1

)
(4)

where t = (tx, ty, tz)
T defines the translation vector.

The rotation, scaling and translation matrix provide us to transform between ICS and PCS.

Definition 2 (DICOM transformation matrix). The DICOM transformation matrix is defined by

ΛDCM = TIPPRDCMSDCMT0 (5)

and transform an image coordinate pim = (i1, i2, h)T to patient coordinate pp = (x, y, z)T by

ext(pp) = ΛDCMext(p
im). T0 is the translation which shift the slice to make top left voxel centered

at (0, 0, 0), i.e. T0 := Tt with t = (−1,−1,−1)T . RDCM and SDCM are defined by (2) and (3) and

TIPP translate the top left voxel from the first slice at IPP.

Remark 1 (Inverse DICOM transformation matrix). The inverse of ΛDCM exist and transform a

patient coordinate into an image coordinate by ext(pim) = Λ−1DCMext(p
p).
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Proof. The inverse of the rotation matrix is given by R−1DCM = RTDCM , the inverse of the translation

matrix by T−1t = T−t and the inverse of scaling matrix by using sc−1 = ( 1
scx
, 1
scy
, 1
scz

).

Definition 3 (De-rotated patient coordinate system). Corresponding to the PCS and the ICS

we define a derotated patient coordinate system by pdp ∈ R3 with ext(pdp) = RTDCMext(p
p) =

TIPPSDCMT0ext(p
im). IOP = (1, 0, 0, 0, 1, 0)T in a derotated PCS.

The are no rotational differences between the de-rotated PCS and the ICS. Furthermore, the

volume and contour information are aligned to each other in the de-rotated PCS. Therefore, it is

used for the statistical analysis.

2 Post-processing of BFE

This section discusses the reordering algorithm and introduce constraint and regularization param-

eters into our shape model. Let n ∈ {1, . . . , N} be fixed in the following section and l = 1, . . . , L

the number of contour slices. We assume equidistant slice distances, well defined and sorted slices.

Calculation are carried out inside ICS.

2.1 Reordering of the first and second principal axis

After the computation of BFEl ∈ R2 × R2
+ × (−π

2 ,
π
2 ] we have to reorder the first and second

principal axis to establish correspondence between the parameter of adjacent slices. The reordering

algorithm is visualized in Figure 2 and given by the the following steps:

1. Transformation of the orientation parameter φl to directional cosines ψl = (cosφl, sinφl)T to

avoid computational non-uniqueness by the direction of the rotation.

2. Computation of the position of the basis slice by M = round(θ13 + 1
2(θL3 − θ13)) where round

means rounding to the closest integer.

3. Initialization of reordering for the basis slice SM . The first principal axis is chosen to be

closest to [1, 0] by determination of the distance of the x-axis to the first and second principal

axis. The coordinate origin is defined by θM and the direction of x and y-axis are given by

(1, 0)T and (0, 1)T in the ICS. Note that each principal axis can be defined in the opposite
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Figure 2: Visualization of the reordering procedure. Left image: Initialization of the reordering
step for slice M . Right image: Reodering of slice M − 1.

direction, i.e. the four possible directions are ψ̂l1 = ψl, ψ̂l2 = −ψl, ψ̂l3 = (−sinφl, cosφl)T and

ψ̂l4 = −ψ̂l3. We obtain the reordered best fit BFEl := (θl, α̃l, ψ̃l)T by

arccos((1, 0)ψ̃l) = min
i∈{1,...,4}

arccos((1, 0)ψ̂li) (6)

where ψ̂li is a normal vector by definition and l = M .

4. Reordering from the basis slice to first slice, i.e. l = M − 1, . . . , 1. The first principal axis

ψ̃l is chosen to be closest to ψ̃l+1 of the 4 axes defined by BFEl, i.e., BFEl is chosen to

minimize arccos((ψ̃l+1)T ψ̂li), l = M − 1, . . . , 1.

5. Reordering from the basis slice to last slice, i.e., l = M + 1, . . . , L. The first principal axis

ψ̃l is chosen to be closest to ψ̃l−1 of the 4 axes defined by BFEl, i.e., BFEl is chosen to

minimize arccos((ψ̃l−1)T ψ̂li), l = M + 1, . . . , L.

Note, that BFEl ∈ R2 × R2
+ × (−π, π] compared to BFEl ∈ R2 × R2

+ × (−π
2 ,

π
2 ]. In fact, the

rotation angle is not restricted by the above reordering procedure but we assume the maximal

rotation between the basis and an arbitrary slice is max(|φi − φM |) = π, i ∈ {1, . . . , L} after

reordering. This allows a full twist of the prostate which we do not expect. In the following, we do

not distinguish between BFEl and BFEl. For the sake of convenience, we assume a reordered set

of best-fitting ellipses and denote it simply by BFEl := (θl, αl, φl)T ∈ R2 × R2
+ × (−π, π].
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2.2 Constraint and relaxation

We introduce two additional constraints in the parameter model BFEl, l = 1, . . . , L, which are re-

laxations of the rotation parameter φ in case of circularity and between large forward and backwards

movings between neighbor slices.

Circularity: We define a cubic function λl = cpl where cl = minl α
l

maxl αl
is a measure of the circularity

of the ellipse in slice l = 1, . . . , L and p is a parameter which defines the power of the cubic

function. The circularity is 1 if both axes have the same length. Simulations have shown that

a choice of p = 12 leads to reasonable results in our model. The orientation parameter φl is

relaxed by

φ̃l =


(1− λl)φl, l = M,
λlφ

l+1 + (1− λl)φl, l < M,
λlφ

l−1 + (1− λl)φl, l > M.

That means, in case of high circularity cl we do not trust the orientation in the current slice

l.

Relaxation between neighbor slices: Penalizing of large changes of the rotation between

neighbor slices, i.e., between the parameters φ(l−1), φl and φ(l+1). At first, we note that

the largest possible change between two slices is maximal π
4 after reordering as mentioned

above. A simple quadratic function is used for the relaxation by

φ̃l =

{
λlφ

l+1 + (1− λl)φl with λl =
(
4
π |φ

l+1 − φl|)
1
2 , l < M

λlφ
l−1 + (1− λl)φl with λl =

(
4
π |φ

l−1 − φl|)
1
2 , l > M.

3 Control point methods

In this section, we present three Control Point (CP) methods with construction of the transfor-

mation matrix ΛndCP and the parameter ηnl. The control point method used in the main article is

described by CP3 in Section 3.3 (page S13). In addition, two alternatives are presented by method

CP1 in Section 3.1 (page S8) and CP2 in Section 3.2 (page S11). Both sections can be skipped if

the reader is only interested in CP3.

Before we construct a transformation matrix ΛndCP between the derotated PCS and the sample

space from the control points (see Figure 2 in the main article), we have to transform the control

S7



points CPn and ellipses parametrization BFEnl from the ICS to the derotated PCS by ext(pdp) =

Ξext(pim) with

Ξ = TIPPSDCMT0

using Definition 3 in Section 1.3. Therewith, all data sets have the same origin and rotation of the

underlying coordinate system between different data sets and same distances between points. Note,

the voxel size can be different between different data sets. Therefore, distances between coordinates

in the ICS might be different for different data sets. For reasons of simplicity, the mapping between

the normal and the extended coordinate system is not mentioned explicit in the following section.

In general, we have to carry out this step if we convert with the transformation matrix Ξ. The

derotated prior data are given by the set {dBFEnl, dCPn} with

dCPn = Ξ(CPn) and (7)

dBFEposnl = (Ξ(pnl1 ),Ξ(pnl2 ),Ξ(pnl3 ))T (8)

whereas BFEposnl = (pnl1 , p
nl
2 , p

nl
3 )T ∈ R9 is the positional description of a best-fitting ellipse as

described in the following remark.

Remark 2 (Positional BFE). An alternative representation for a best fitting ellipse is given by the

set BFEposnl := (pnl1 , p
nl
2 , p

nl
3 )T ∈ R9 with

pnl1 = θnl,
pnl2 = θnl +R(αnl1 , 0)T ,
pnl3 = θnl +R(0, αnl2 )T ,

and R =

(
cosφnl − sinφnl

sinφnl cosφnl

)
is a rotation matrix. We call this representation the positional best fitting ellipse. Both represen-

tations are isomorph to each other.

3.1 CP method 1

In the first approach, called CP1, we assume the definition of three control points CPn :=

(An, Bn, Pn1 ) ∈ R3×3. See Figure 3 for a visualization of the parameters which are defined as

follow:

An centroid point of the prostate in the first contour slice of the prostate,
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Bn centroid point of the prostate in the last contour slice of the prostate,

Pn1 point at the boundary of the prostate in posterior direction and in the base slice M (center

slice, see Appendix 2.1).

(a) An (b) Pn
1 (c) Bn

Figure 3: Definition of control points using method CP1. The dashed line defines the manual
delineation of the prostate. (a) Definition of An (first visible contour slice). (b) Definition of Pn1
in basis slice M . (c) Definition of Bn (last visible contour slice).

x
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b
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b
MdCP

s

(a)

x

y

z

ζ

dPn
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(b)

Figure 4: (a) Visualization of translation point MCP and the scaling s from the control points dA
and dB by a cross section in slice direction z. (b) Rotation of dP1 around the z-axis to a point
with x-coordinate zero.

Given the derotated prior data we construct the transformation matrix ΛndCP to a set of com-

parable best fitting ellipses for fixed n by the following steps (see Figure 4):
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1. Translation of MdCPn = 1
2(dBn − dAn) to (0, 0, 0) where dCPn := (dAn, dBn, dPn1 ). This

results in the translation matrix T−MdCPn
using formula (4) on page S4.

2. Rotation of the point dPn1 around the z-axis with angle ζ given by the angle between the

two vectors dPn1 and (0, 1, dPn1 (z))T . The rotation matrix RdCPn is given by formula (1) on

page S1 using v = (0, 0, 1)T and ζ as described before.

3. Scaling of the data by s = |dBn(z) − dAn(z)|. The scaling matrix is given by SdCPn with

sc = (L−1s , L−1s , L−1s )T using formula (3) on page S4 where L is defined as the common number

of interpolated best fitting ellipses as described in section 2 of the main article. Note, we do

not scale the length of the prostate by ‖dBn−dAn‖ because we want to have the same length

in z-direction. Figure 5 shows close correlation between both values for the training data set.

Finally, the transformation of the derotated prior data {dBFEnl, dCPn} to {BFEnl, CPn} is given

by

BFE
pos
nl =

(
ΛnCP (dpnl1 ),ΛnCP (dpnl2 ),ΛnCP (dpnl3 )

)T
and CPn = ΛnCP (dCPn) with

ΛndCP = SdCPnRdCPnT−MdCPn
. (9)

Figure 5: Comparison of the distance between the control points dA and dB in z-direction and
‖dB − dA‖ (in mm). The dotted line shows equal values.
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3.2 CP method 2

An alternative second approach, called CP2, assumes the definition of the control points CPn =

(An, Bn, Pn1 , . . . , P
n
12) ∈ R3×14, n = 1, . . . , N with

An centroid point of the prostate in the first contour slice of the prostate,

Bn centroid point of the prostate in the last contour slice of the prostate,

Pn1 , . . . , P
n
12 points at the boundary of the prostate in the base slice M whereas M is defined as

described in Appendix 2.1.

Figure 6 visualizes the corresponding parameters plus the underlying manual delineation line which

is not available in a new data set.

(a) An (b) Pn
m (c) Bn

Figure 6: Definition of control points using method CP2. The dashed line defines the manual
delineation of the prostate. (a) Definition of An in the first visible contour slice. (b) Definition of
Pnm in basis slice M , m = 1, . . . , 12. (c) Definition of Bn in the last visible contour slice.

Given the derotated prior data {dBFEnl, dCPn}, l = 1, . . . , Ln and n = 1, . . . , N, we construct

the transformation matrix ΛndCP to a set of comparable best fitting ellipses for fixed n by the

following steps:

1. Computation of the best fitting ellipse CPBFEn = (θCPn , αCPn , φCPn)T ∈ R2×R2
+×(−π

2 ,
π
2 ]

for the set {Pn1 , . . . , Pn12}.

2. Transformation of CPBFEn to dCPBFEn = (θdCPn , αdCPn , φdCPn)T in a derotated PCS.
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3. The center slice is given by sn = Ln+1
2 for each training data set n. If Ln is an odd number the

center slice with the best-fitting ellipse is clearly defined. Otherwise, the best-fitting ellipses

have to be interpolated to a number Ln + 1 before.

4. Estimation of the mean of the derotated best fitting ellipses in the center slice sn from the

training data, i.e.,

µdBFE := (µdBFEθ , µdBFEα , µdBFEφ )T =
1

N

∑
n

dBFEnsn . (10)

Furthermore, we estimate the mean length by

µdBFEL =
1

N

∑
n

‖θdBFEnLn − θdBFEn1‖

.

5. If Ln is an odd number then MdCPn = θdCPn . Otherwise MdCPn is determined from a cubic

interpolation of the curve with support points in dAn, θdCPn and dBn. The translation of

dCPBFEn to the origin (0, 0, 0) is given by the translation matrix T−MdCPn
using formula (4)

on page S4.

6. The rotation matrix RdCPn is given by formula (1) on page S1 using v = (0, 0, 1)T and

ζ = −φdCPn , i.e., we rotate the first principal axis of dCPBFEn to the direction of the

x-axis.

7. Scaling of the data in x-direction by sc1 =
µdBFEα1

αdCPn1

, y-direction by sc2 =
µdBFEα2

αdCPn2

and z-

direction by sc3 =
µdBFEL

|dBn(z)−dAn(z)| . Thereby, the scaling matrix is given by SdCPn with

sc = (sc1, sc2, sc3)
T using formula (3) on page S4. Note again, we do not scale the length

of the prostate because we want to have the same length in z-direction.Figure 5 shows close

correlation between both values for the training data set. Furthermore, Figure 7 illustrate

the scaling parameters for our training data set and indicates correlations between them.

Finally, using CP method 2, the transformation of the derotated prior data {dBFEnl, dCPn} to

{BFEnl, CPn} is given by

BFE
pos
nl =

(
ΛndCP (dpnl1 ),ΛndCP (dpnl2 ),ΛndCP (dpnl3 )

)T
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and CPn = ΛndCP (dCPn) with

ΛndCP = SdCPnRdCPnT−MdCPn
. (11)

An alternative to the above mentioned approach for computation of MdCPn is given by setting

MdCPn = θCPn for even and odd numbers Ln. Table 1 shows the average of the standard L1 and

L2 norm of the distance vector between MdCPn and the interpolated center ellipse position from

the corresponding training data. We argue for the implemented version using cubic interpolation

due to a smaller error.

(a) sc1 versus sc2 (b) sc1 versus sc3 (c) sc2 versus sc3

Figure 7: Scaling parameters using transformation method 2 for the training data set.

Table 1: Average error of center ellipse position derived from control points versus center ellipse
position derived from training data (unit: mm).

center ellipse position alternative version implemented version

L1 norm 0.5612 0.5470

L2 norm 0.4707 0.4568

3.3 CP method 3

The third approach, called CP3, is the primary used approach in this paper and assumes the

definition of control points CPn = (Anm1
, Bn

m2
, Pnm3

) ∈ R3×(m1+m2+m3),mi ∈ N with

Anm1
points at the boundary of the prostate in the first contour slice of the prostate,
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Bn
m2

points at the boundary of the prostate in the last contour slice of the prostate,

Pnm3
points at the boundary of the prostate in the base slice M (see subsection 2.1).

We have to assume mi ≥ 3 to be able to fit ellipses to the first, base and last slice. In the current

work m1 = m2 = m3 = 6 is chosen to achieve robust fits of best-fitting ellipses. See Figure 8 for a

visualization of the parameters.

(a) An
m1

(b) Pn
m3

(c) Bn
m2

Figure 8: Definition of control points at the boundary of the prostate using method CP3 with
m1 = m2 = m3 = 6. (a) Definition of {An1 , . . . , Anm1

} (first visible contour slice). (b) Definition of
{Pn1 , . . . , Pnm3

} in basis slice M . (c) Definition of {Bn
1 , . . . , B

n
m2
} (last visible contour slice).

Given the derotated prior data {dBFEnl, dCPn}, we construct the transformation matrix ΛndCP

similar to Section 3.2. The main difference is the additional deformation of the ellipsoid by the

control point information in the first and last slice. Let n ∈ {1, . . . , N} be fixed. ΛndCP is derived

by the following steps:

1. Computation of the best fitting ellipses CPBFEn,i = (θi,CPn , αi,CPn , φi,CPn)T ∈ R2 ×

R2
+ × (−π

2 ,
π
2 ], i = 1, 2, 3 from the set {An1 , . . . , Anm1

} if i = 1, {Bn
1 , . . . , B

n
m2
} if i = 2 and

{Pn1 , . . . , Pnm3
} if i = 3.

2. Transformation of CPBFEn,i to dCPBFEn,i in a derotated PCS with dCPBFEn,i =

(θi,dCPn , αi,dCPn , φi,dCPn)T .

3. The center slice is given by sn = Ln+1
2 for each training data set n. We assume that Ln is an

odd number where the center slice with the best-fitting ellipse is clearly defined. Otherwise,
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the set of derotated best-fitting ellipses dBFEn has to be interpolated to an odd number

Ln + 1 before.

4. Estimation of mean µi,dBFE , i = 1, 2, 3, from the derotated best-fitting ellipses in the first,

last and center slice sn from the training data by

µ1,dBFE := (µ1,dBFEθ , µ1,dBFEα , µ1,dBFEφ )T =
1

N

∑
n

dBFEn1,

µ2,dBFE := (µ2,dBFEθ , µ2,dBFEα , µ2,dBFEφ )T =
1

N

∑
n

dBFEnLn ,

µ3,dBFE := (µ3,dBFEθ , µ3,dBFEα , µ3,dBFEφ )T =
1

N

∑
n

dBFEnsn .

Furthermore, we estimate the mean length by

µdBFEL =
1

N

∑
n

‖θdBFEnLn − θdBFEn1‖

.

5. If Ln is an odd number then MdCPn = θ3,dCPn . Otherwise MdCPn is determined from a

cubic interpolation of the curve with support points in θ1,dCPn , θ3,dCPn and θ2,dCPn . The

translation of dCPBFEn to the origin (0, 0, 0) is given by the translation matrix T−MdCPn

using formula (4) on page S4.

6. The rotation matrix RdCPn is given by formula (1) on page S1 using v = (0, 0, 1)T and

ζ = −φ3,dCPn , i.e., we rotate the first principal axis of dCPBFEn,3 to the direction of the

x-axis.

7. Determination of scaling values sc1l and sc2l of the first and second principal axis for slices

l = 1, . . . , Ln. At first, the scaling values in the first, center and last slice are calculated,

i.e., sc11 =
µ1,dBFEα1

α1,dCPn
1

, sc21 =
µ1,dBFEα2

α1,dCPn
2

, sc1Ln =
µ2,dBFEα1

α2,dCPn
1

, sc2Ln =
µ2,dBFEα2

α2,dCPn
2

, sc1sn =
µ3,dBFEα1

α3,dCPn
1

and sc2sn =
µ3,dBFEα2

α3,dCPn
2

. Afterwards, the remaining scaling values sc1l and sc2l are interpolated

from (sc11, sc1sn , sc1Ln) and (sc21, sc2sn , sc2Ln). In addition, the scaling value in z-direction

is determine by sc3 =
µdBFEL

|θ2,dCPn3 −θ1,dCPn3 |
. Thereby, the scaling matrices are given by Sl,dCPn , l =

1, . . . , Ln, with sc = (sc1l, sc2l, sc3)
T using formula (3) on page S4. We do not scale the length

of the prostate because we want to have the same length in z-direction. Figure 5 shows close

correlation between both values for the training data set.
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The primary used CP method 3 in this paper transforms the derotated prior data {dBFEnl, dCPn}

to {BFEnl, CPn} by

BFE
pos
nl =

(
ΛndCP (dpnl1 ),ΛndCP (dpnl2 ),ΛndCP (dpnl3 )

)T
and CPn = ΛndCP (dCPn) with

ΛndCP := Sl,dCPnRdCPnT−MdCPn
. (12)

3.4 Description of θnl in relation to the control points

In addition to the position θnl = (θnl1 , θ
nl
2 , θ

nl
3 )T of each best-fitting ellipse, we describe the parameter

in terms of a distance vector ηnl of θnl to a line or a curve, defined by the control points. Thereby, we

are describing the mean shape which is closest to the control points. Corresponding to the different

control point methods, see sections before, there are different ways of describing the positional

parameter via ηnl. Let n = 1, . . . , N be fixed in this section.

3.4.1 Determination of ηnl using CP method 1

Given dCPn := (dAn, dBn, dPn1 ) the two control points dAn and dBn define a line
−−−−−→
dAndBn ⊂

R3 that cross each slice l = 1, . . . , Ln with prostate contour information. Now, κnl defines the

intersection point of the line
−−−−−→
dAndBn with each slice l. It is given by κnl = dAn + l̃

Ln−1v
n with

l̃ = l − 1, vn = dBn − dAn and l ∈ {0, . . . , Ln}. Thereby, the distance vector ηnl to θnl is defined

by

ηnl = θnl − κnl,

with l ∈ {0, . . . , Ln}. Simulations have shown that statistical inference of ηnl result in a much

smaller variance than for θnl.

3.4.2 Determination of ηnl using CP method 2 and 3

Instead of construction a line
−−−−−→
dAndBn as described before, we construct a cubic curve that connect

three slices with contour points, i.e., the first, the basis and the last slice. Using CP method 2,

dCPn is defined by

dCPn := (dAn, dBn, dPn1 , . . . , dP
n
12)
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and dCPBFEn = (θdCPn , αdCPn , φdCPn). The three points dAn, θdCPn and dBn define a curve

gdCP (z). Similar, in case of CP method 3, CPn := (dAn1 , . . . , dA
n
m1
, dBn

1 , . . . , dB
n
m2
, dPn1 , . . . , dP

n
m3

)

results in the three best fitting ellipses dCPBFEn,i = (θi,dCPn , αi,dCPn , φi,dCPn), i = 1, 2, 3. There-

with, the three points θi,dCPn define a cubic curve gdCP (z). The final curve is calculated by

cubic interpolation with supporting points {An, θdCPn , Bn} for CP2 or {θ1,dCPn , θ3,dCPn , θ2,dCPn}

for CP3. Therewith, gdCP (z) cross each slice, whereas each slice is defined by an (x, y, z)-plane

with z = θnl3 , l = 1, . . . , Ln. Let gCP (θnl) define the intersection points of the curve gCP (z) with

each slice. The distance vector ηnl to θnl is calculated by

ηnl = θnl − gCP (θnl)

with l ∈ {0, . . . , Ln}.

Figure 9 and 10 show µlθ, µ
l
η, θ

nl and ηnl of the training data set in the sample space using

CP3 with l = 1, . . . , 23. The covariance matrices are visualized by 90% confidence ellipses. We can

clearly decrease the variance using the alternative approach with identical variance for the base

slice because of κnl = 0 ∀n = 1, . . . , N for l = M .

4 Posterior distribution

In addition to construct a shape model and the corresponding shape space, we aim to estimate the

best fitting ellipses BFEl parametrized by ρl = (θl, αl, φl)T , l = l, . . . , L in a new observed data set

given a set of control points CP . In general, this can be obtained through the posterior π(ρ | S)

where sil ∈ S ⊆ V is the volume information and i = (i1, i2) ∈ I(ρ) is a set of indices within the

ellipses ρ. The control points CP are used to deform the prior model π(ρ) as described in Section 3.

Therefore, we model the posterior by an empirical Bayes approach [2]. The posterior

π(ρ | S,CP ) ∝ L(S | ρ) ∗ π(ρ | CP )

defines the posterior density of the deformed template π(ρ | CP ) given the the observed image.

The likelihood or image model L(S | ρ) is the joint probability density function of the gray levels

given the parametrized object ρ|CP , whereas ρ|CP defines the ellipses ρ deformed by the control

points CP . The prior π(ρ | CP ) models realistic variations from our mean shape µBFE ∈ (R2 ×

R2
+ × (−π, π])L given the control points.
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Figure 9: Slice S = −11, . . . , 0 where 0 mark the base-slice (i.e. −L−1
2 , . . . , 0). Each plot contains

23 red and blue circles representing θnl (Position) and ηnl (Dist. Pos2CP-line) respectively, where
N = 23 is the number of training cases and n = 1, . . . , N . The means µlθ and µlη are depicted by
small crosses. The corresponding covariance matrices are depicted by 90% confidence ellipses.
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Figure 10: Slice S = 0, . . . , 11 where 0 mark the base-slice (i.e. 0, . . . , L−12 ). Each plot contains
23 red and blue circles representing θnl (Position) and ηnl (Dist. Pos2CP-line) respectively, where
N = 23 is the number of training cases and n = 1, . . . , N . The means µlθ and µlη are depicted by
small crosses. The corresponding covariance matrices are depicted by 90% confidence ellipses.
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We assume different mean image gray values ν0 inside and ν1 outside of the object and constant

variance τ2 as proposed in Dryden and Mardia [3]. Therewith, the likelihood can be modeled by

L(S | ρ, CP ) ∝ exp

− 1

2τ2

L∑
l=1

∑
i∈I(ρl|CP )

(sil − ν0)2

− 1

2τ2

L∑
l=1

∑
i/∈I(ρl|CP )

(sil − ν1)2


with si = ν0 + εi if i ∈ I(ρ|CP ) and si = ν1 + εi if i /∈ I(ρ|CP ) and an error distribution of

εi
iid∼ N(0, τ2).

Using the suggest prior distribution from section 2 in the main article, the prior π(ρ | CP ) =

π(θ, α, φ | CP ) is given by

π(ρ | CP ) ∝ exp

(
−β
∑
l

1

2(σlθ1)2
(θl1 − µlθ1)2 − β

∑
l

1

2(σlθ2)2
(θl2 − µlθ2)2

)

∗ exp

(
−β
∑
l

µlα1

2(σlα1
)2

(αl1 − ln(µlα1
))2

)

∗ exp

(
−β
∑
l

µlα2

2(σlα2
)2

(αl2 − ln(µlα2
))2

)

∗ exp

(
−β
∑
l

1

2(σlφ)2
(φl − µlφ)2

)∣∣∣∣∣
CP

with θli = ξli + ηli, i = 1, 2 (see section 3.4). The weight parameter β ∈ R+ describes the importance

of the prior compared to the likelihood. In addition, we extend the prior by taking into account

the variation between neighbor slices by

π1(ρ | CP ) ∝ π(ρ | CP )

∗ exp

−β̃1 ∑
i=1,2

∑
l

(θl−1i − θli)2 + (θl+1
i − θli)2


∗ exp

−β̃2 ∑
i=1,2

∑
l

(αl−1i − αli)2 + (αl+1
i − αli)2


∗ exp

(
−β̃3

∑
l

(φl−1 − φl)2 + (φl+1 − φl)2
)∣∣∣∣∣

CP

,

where β̃1 = ββ1, β̃2 = ββ2, β̃3 = ββ3 and β1, β2, β3 ∈ R+ are regularization parameters which have

to be chosen. Therewith, we introduce a constraint that small changes between neighbor slices are
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more likely than jumps. An alternative approach is to take into account neighbor relations by the

second derivatives, i.e.,

π2(ρ | CP ) ∝ π(ρ | CP )

∗ exp

(
−β̃1

∑
l

(θl+1
1 − 2θl1 + θl−11 )2 + (θl+1

2 − 2θl2 + θl−12 )2

)

∗ exp

(
−β̃2

∑
l

(αl+1
1 − 2αl1 + αl−11 )2 + (αl+1

2 − 2αl2 + αl−12 )2

)

∗ exp

(
−β̃3

∑
l

(φl+1 − 2φl + φl−1)2

)∣∣∣∣∣
CP

with β̃1, β̃2, β̃3 as before. Hence, the posterior becomes

π(ρ | S,CP ) ∝ L(S | ρ) ∗ πi(ρ | CP ), i ∈ {1, 2}. (13)

Estimation of π(ρ | S,CP ) can be done by Markov chain Monte Carlo (MCMC) method using the

Metropolis-Hastings algorithm [4]. The MCMC approach avoids the computation of the unknown

normalization constant in the posterior π(ρ | S,CP ) by drawing independent samples from a

proposal distribution and the generation of a Markov chain. The MCMC method is implemented

as follows:

1. Choosing of an arbitrary initial estimate of ρ|CP , e.g, by the prior model.

2. Generation of a random permutation Ip = {i1, . . . , iL} from the index set {1, . . . , L} whereas

L is the number of slices. Therewith, we update the slices in a random order.

3. Generation of a new random realization from the proposal distribution g(ρnew,ik | ρold,ik), e.g.,

by ρnew,ik = (θnew,ik , anew,ik , φnew,ik)T ∼ N(ρold,ik , χ
2
ik

) where χ2
ik

can be chosen depending

on the prior distribution by χik = diag(λ1σ
ik
θ1
, λ2σ

ik
θ2
, λ3σ

ik
a1 , λ4σ

ik
a2 , λ5σ

ik
φ ), k = 1, . . . , L where
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λi, i = 1, . . . , 5 are weights that must be chosen. We assume a density

g(ρnew,ik | ρold,ik) ∝ exp

−1

2

2∑
j=1

1

(σikθj )
2
(θnew,ikj − θold,ikj )2

− 1

2

2∑
j=1

1

(σikaj )
2
(anew,ikj − aold,ikj )2

−1

2

2∑
j=1

1

(σikφj )
2
(φnew,ikj − φold,ikj )2

 .

4. Calculation of the Hastings-ratio

p =
π(ρnew | S,CP )g(ρold | ρnew)

π(ρold | S,CP )g(ρnew | ρold)

using the derived formula 13 for the posterior density. Note, the used proposal density is

symmetric and therefore

p =
π(ρnew | S,CP )

π(ρold,k | S,CP )
.

5. Accept ρik = ρnew,ik with probability min(1, p) otherwise keep ρik = ρold,ik .

6. Repeat steps 3 to 5 L-times until each slice is updated.

Typically the MCMC method consist of a burn-in and a sample period by an iteration of steps 2 to

6. The final ρ|CP is calculated by the average of the sample period. In our simulations we used a

burn-in and sample period of 500 samples each. Furthermore, calculations are done inside a mask

around the registered prior shape to decrease computation time and to avoid additional variance

by other structures in the lower male pelvis.

5 Additional data analysis

This section reports additional results for the prior as well as for the MCMC method described in

Section 4 before.

5.1 Prior results

In Section 3 different approaches of control points are discussed. We obtain a different mean shape

as a prior corresponding to the used method. The results in Section 3 in the main article assume
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the control point method CP3. Alternatively, Table 2 shows the the evaluation results between the

manual delineation and the deformed MBFE to the manual contours for each test data set using

CP2. All evaluation criterias in Table 3 (in the main article) show a better performance than in

Table 2. We do not show the results of control point method CP1 here because the results are even

less accurate than for CP2. Even if we observe a less accurate performance of CP2 compared to

CP3, the method has the advantage of fewer control points in the outer slices where the definition

of the delineation is more challenging. Therefore, this method is an object of further studies.

Table 2: CP2: Evaluation metrics between Mean Best Fitting Ellipse and manual delineations
given by the physician. HD mean is given in mm, Dice 3D and Accuracy in percentage.

Test set 1 2 3 4 5 6 7 8 9 10 µ

HD mean 4.58 2.77 6.32 3.61 4.12 4.66 3.43 6.82 4.03 4.04 4.44
Dice 3D 0.83 0.90 0.85 0.87 0.87 0.83 0.89 0.84 0.92 0.89 0.87
Accuracy 0.69 0.81 0.74 0.76 0.73 0.63 0.80 0.64 0.84 0.78 0.74

5.2 MCMC results

In this section we discuss results after MCMC as described in Section 4 with π2(ρ | CP ) as the

prior distribution whereas we assume control points method CP3 as described in Section 3.3. In

the case of CP3, we do not update the first, center and last slice because the underlying contour is

described reasonable well by the control point.

The weight β and regularization parameters β1, β2 and β3 of the prior distribution have to be

chosen in practice. A simulation study (reported below) motivates, e.g., a choice of β = 40 and

(β1, β2, β3) = (2, 180, 10).

Figures 11 and 12 depict the influence of different β, β1, β2 and β3 in formula (13) by a

comparison of the distances (7)-(9) as described in the main article. β = 0 means that the posterior

is only driven by the likelihood. On the other hand, β → ∞ means we ignore the likelihood and

the posterior is only determined by the prior. We can observe the volume overlap and accuracy

converged against the prior for increasing weights β. The regularization parameters β1, β2 and β3

control the speed of the convergence to the prior (MBFE) and stabilize the results.

Based on initial simulations with several parameter combinations, we replicated 200 times the

MCMC step for 3 different patients from the test data set with β ∼ U(0, 100), β1 ∼ U(0, 20),
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(a) test data set 5 (b) test data set 6

Figure 11: Volume overlap after MCMC using different (β, β1, β2, β3) settings for two different test
data sets compared to the volume overlap of BFE and MBFE with manual delineation line.

(a) test data set 5 (b) test data set 6

Figure 12: Accuracy after MCMC using different (β, β1, β2, β3) settings for two different test data
sets compared to the accuracy of BFE and MBFE with manual delineation line.

β2 ∼ U(0, 200) and β3 ∼ U(0, 30) where U(a, b) denote the standard uniform distribution on the

open interval (a, b). The results with the two highest dice coefficients (volume overlap) are shown

in Table 3.

On the basis of the simulation results we have chosen five different MCMC parameter settings

Mi = {β, β1, β2, β3} by M1 = {94, 6, 181, 28}, M2 = {32, 1.6, 173, 1}, M3 = {53, 1.1, 140, 12},

M4 = {40, 2, 180, 10} and M5 = {80, 10, 180, 20}. Tables 4, 5 and 6 illustrate the distances between
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Table 3: Prior distribution parameters ranked by the two highest dice 3D coefficients after 200
simulations for 3 different test data sets.

Test Weights for the prior distribution
Dice 3D Accuracy

data set β β̃1 β̃2 β̃3

5
94.08 15.95 181.13 27.92 0.89 0.77
92.17 13.22 118.95 10.91 0.89 0.76

6
53.64 1.14 138.84 12.48 0.87 0.74
47.42 1.10 27.69 5.27 0.86 0.73

8
32.36 1.62 173.12 0.95 0.90 0.80
28.31 1.75 181.46 19.35 0.90 0.80

the manual delineation and the MCMC result for each test data set and the five different parameter

sets. For comparison M0 shows the results from the registered mean shape without applying MCMC

as we have seen in Table 2 and 3 in the main article. A comparison with the results indicate that

we do not gain large improvement by MCMC compared to the registered mean shape using the

control points. In fact, the 10 test data result in a median volume overlap and accuracy of 0.90,

0.81 for M0 (MBFE) compared to 0.91, 0.82 for the parameter set M4 (MCMC), with a median

absolute deviation (MAD) of 0.021, 0.035 compared to 0.021, 0.040. The values show a slight overall

improvement after MCMC. Particularly, there is an improvement of the accuracy in Table 6 for all

patients in case of parameter set M5. Furthermore, test data set 9 in Table 5 shows a significant

improvement of the volume overlap after MCMC. The slices of this patient are depicted in Figure 13

together with the manual contour information, contour line from deformed mean shape and contour

line after MCMC. Nevertheless, we believe the MCMC procedure is a too time consuming step in

the praxis compared to the deformation of the mean shape given control points.

Table 4: HD mean between MCMC results and manual delineations given by the physician using
different parameter sets Mi = {β, β̃1, β̃2, β̃3} (in mm).

Test data set
1 2 3 4 5 6 7 8 9 10 md MAD

M0 2.51 2.17 4.24 2.83 3.75 4.63 1.95 4.67 4.27 4.42 4.00 0.655
M1 2.26 1.95 4.38 2.96 4.02 4.63 1.93 4.58 2.91 4.47 3.49 1.034
M2 2.18 1.96 4.63 2.88 4.65 4.63 1.89 4.34 3.88 5.00 4.11 0.719
M3 2.26 2.05 4.81 2.99 4.09 4.63 1.90 4.75 3.68 4.59 3.88 0.883
M4 2.17 2.15 4.43 3.07 4.36 4.63 1.71 4.33 4.01 4.53 4.17 0.413
M5 2.19 1.92 4.12 2.75 4.03 4.63 1.93 4.67 2.58 4.46 3.39 1.136

To verify further the proposed posterior distribution in formula (13), we compare the volume
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Table 5: Dice 3D between MCMC results and manual delineations given by the physician using
different parameter sets Mi = {β, β1, β2, β3} (in percentage).

Test data set
1 2 3 4 5 6 7 8 9 10 md MAD

M0 0.92 0.93 0.90 0.91 0.88 0.84 0.92 0.88 0.89 0.88 0.90 0.021
M1 0.93 0.93 0.91 0.90 0.88 0.84 0.91 0.88 0.92 0.88 0.91 0.023
M2 0.93 0.93 0.90 0.91 0.84 0.85 0.91 0.90 0.92 0.87 0.90 0.026
M3 0.93 0.93 0.91 0.91 0.88 0.86 0.90 0.89 0.92 0.88 0.90 0.023
M4 0.93 0.93 0.91 0.90 0.87 0.85 0.91 0.89 0.92 0.88 0.91 0.021
M5 0.93 0.93 0.91 0.90 0.88 0.84 0.91 0.88 0.93 0.89 0.90 0.021

Table 6: Accuracy between MCMC results and manual delineations given by the physician using
different parameter sets Mi = {β, β1, β2, β3} (in percentage).

Test data set
1 2 3 4 5 6 7 8 9 10 md MAD

M0 0.84 0.84 0.81 0.82 0.74 0.70 0.84 0.73 0.80 0.74 0.81 0.035
M1 0.86 0.86 0.82 0.81 0.75 0.70 0.83 0.74 0.85 0.75 0.82 0.047
M2 0.87 0.86 0.80 0.83 0.64 0.72 0.82 0.80 0.85 0.71 0.81 0.046
M3 0.86 0.85 0.81 0.83 0.73 0.74 0.81 0.79 0.85 0.74 0.81 0.042
M4 0.87 0.86 0.82 0.82 0.71 0.73 0.84 0.78 0.85 0.75 0.82 0.040
M5 0.86 0.86 0.82 0.82 0.75 0.71 0.84 0.76 0.86 0.76 0.82 0.047

overlap and accuracy in Figure 14 between MCMC results and MBFE result based on different vol-

ume information. The MCMC results are calculated for different β, fixed (β1, β2, β3) = (2, 180, 10)

and on the basis of:

1. the original volume information,

2. a derived volume from the original by setting all gray values inside the manual delineation

line to 100 and outside to 130 added by some error with the same variance inside and outside,

3. a derived volume from the original by setting all gray values inside the best fitting ellipse to

100 and outside to 130 added by some error with the same variance inside and outside,

4. a derived volume from the original by setting all gray values inside the manual delineation

line to 80 and outside to 150 added by some error with the same variance inside and outside,

5. a derived volume from the original by setting all gray values inside the best fitting ellipse to

80 and outside to 150 added by some error with the same variance inside and outside.
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(a) slice 3 (b) slice 4 (c) slice 5 (d) slice 6 (e) slice 8

(f) slice 10 (g) slice 12 (h) slice 13 (i) slice 14 (j) slice 15

Figure 13: Selected MR slices of test data set 9 in Table 5 and 6. Slice 3 is the first slice and slice 15
the last slice with prostate information in the data set. The control point of the first and last slice
are depicted in (a) and (j). Depicted are manual delineation line (yellow dashed line), deformed
mean shape (magenta solid line) and result after MCMC (green dashed dotted line). Slices 7, 9
and 11 are not depitecd in the Figure.

The standard deviation of the error is chosen to be 50, i.e., ε ∼ N(0, σ2) with σ = 50.

In general, we can note the MCMC procedure works well in case of an ideal underlying image

information. We do not need prior information if we use volume 2 to 5. The true underlying

delineation can be found by the likelihood. Volume overlap and accuracy are close to the results

obtained by the BFE for β = 0 which indicate the best possible values using the proposed model.

Furthermore, we observe a decline of the volume overlap and accuracy for larger β using volume 2

to 5, and a convergence to the prior for β → ∞. The convergence rate is different between both

test data set which which can be explained by a less or more complex structure of the prostate. In

addition, the convergence to the prior is faster using volume 2 and 3 compared to volume 4 and 5

due to the lower contrast in inside and outside of the object in volume 2 and 3. In case of the the

original volume information (volume 1), the prior contains the most valuable information about

the prostate contour. We can observe the largest improvement after MCMC for both data set in

the range of β = 20, 40 and 60.

In Figure 14 is shown low information in the MR volumes is a limitation for the MCMC
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(a) test data set 6 (b) test data set 8

(c) test data set 6 (d) test data set 8

Figure 14: Volume overlap ((a),(b)) and accuracy ((c),(d)) of the MCMC results with the manual
delineation using different background images and for different β for test data sets 6 and 8. (volume
1): Using the original volume information. (volume 2): Derived volume by setting all gray values
inside the best fitting ellipse to 100 and outside to 130 plus an error. (volume 3): Derived volume
by setting all gray values inside the manual delineation line to 100 and outside to 130, plus an
error. (volume 4): Derived volume by setting all gray values inside the best fitting ellipse to 80
and outside to 150, plus an error. (volume 5): Derived volume by setting all gray values inside the
best fitting ellipse to 80 and outside to 150 plus an error.

approach. In addition, a careful choice of β, β1, β2 and β3 is a difficult task. Several attempts to

improve the MCMC results were carried out, e.g., different models for the likelihood, calculation of

the Hastings ratio per slice instead of taking into account the entire volume and using the median

instead of the mean to calculate the average of the gray values inside and outside the contour for

the likelihood. Another idea was to select slices with a significant difference of the histogram inside

S28



and outside of the deformed mean shape, e.g., by a Kolmogorv Smirnov test, a Andersson Darling

test or by calculation of the earth mover’s distance. All our attempts did not significantly improve

the MCMC results for all test data sets so far.

Nevertheless, a potential improvement by a different likelihood model is a topic of further reaseach.

Such a likelihood should model the underlying volume structure more carefully. Further possible

directions are to use the MCMC method to sample from probability distributions on the space of

curves as suggested by Fan et al. [5], to derive additional constraints from the training data set or

to create an appearance model as suggested by Cootes and Taylor [6].
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