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1.  Defining the Nature of the Susceptibility Loci 

Several possible “susceptible allelic states” are envisioned in the Model. First, as is the 

case for the HLA DRB1 locus, a “true-susceptibility allele” (or alleles) may be present as a 

“dominant” trait. This state will be defined as one in which a single copy of the allele (or these 

alleles), when present, increases the likelihood of the individual being susceptible to getting MS 

(i.e., these loci confer susceptibility in a dominant fashion).  Second, it is possible that one or 

more true-susceptibility alleles may be present as a “recessive” trait. This state is defined as one 

in which two susceptibility alleles are necessary to confer susceptibility.  Third, it is possible that 

some “dominant” alleles at certain genetic loci confer protection (rather than susceptibility) on 

an individual.  In the Model, therefore, it will be the absence of this allele (or these alleles) at the 

specific genetic locus that will be considered to confer susceptibility. This susceptible allelic 

state is mathematically equivalent to the “recessive” state for a true-susceptibility allele because 

a susceptible individual will need to have both alleles at these loci be non-protective variants in 

order to confer susceptibility.  Fourth, it is possible for protective alleles to be present as a 

“recessive” trait. This state is defined as one in which two copies of the allele are necessary to 

confer protection, and this state is mathematically equivalent to that for a “dominant” true-

susceptibility allele. Fifth, it is possible that both recessive and dominant true-susceptibility 

alleles co-exist at the same locus, in which case there would be a mixture of dominance and the 

“frequency of susceptibility” would reflect a combination of these two allelic states. 

Sixth, it is possible that a single genetic location has both dominant protective and 

dominant true-susceptibility alleles. If the protection only affects susceptibility arising from other 

alleles at the same genetic location, then only the penetrance of the true-susceptibility allele (or 

alleles) will be altered. Thus, if both alleles are present in the same genome, the true-

susceptibility allele will be less likely confer susceptibility compared to when the true-

susceptibility allele is present by itself. Nevertheless, the presence of this allele should still be 

associated with an increased likelihood of an individual being susceptible to getting the disease. 

For example, even if the protective allele completely abrogated the effect of the true-

susceptibility allele, and if the protective/true-susceptibility heterozygote accounted for 10% of 

true-susceptibility-positive individuals, this circumstance would only reduce the apparent 
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penetrance of the true-susceptibility haplotype by 10%.  By contrast, if the protection extended to 

susceptibility conferred by other genetic loci, the situation is somewhat more complicated. Thus, 

if there were dominant protective, neutral, and dominant true-susceptibility alleles present, the 

neutral alleles will be mathematically equivalent to recessive susceptibility alleles and this would 

be mathematically equivalent to a combination of recessive and dominant true-susceptibility 

alleles at this location. If there were only protective and true-susceptibility alleles present, the 

situation would be equivalent to having recessive true-susceptibility alleles at this location. 

Finally, it is also possible that certain alleles might interact with each other in other ways 

and that, potentially, these interactions could be quite complex. However, regardless of their 

complexity, such interactions, again, should be reflected by a change in the apparent penetrance 

of specific genotypes, in the requirement for more loci to be in “susceptible allelic states” in 

order to produce susceptibility, or in a mixture of dominance. As a result, it is sufficient to 

consider in the Model only the “susceptible allelic states” of dominant, recessive, and mixed 

dominance outlined above.  
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2. Relationships between x, r, and n 

Let x, and n be positive integers such that (x ≥ n) and let (r > 0). 

If C (0  <  C  ≤  C*) is the proportion of patients who are both susceptible to MS and HLA 

DRB1*1501-negative in the population, where [C* = C / (0.76) < 1], and where the expected 

“frequency of susceptibility” (F) at the non-HLA DRB1 loci is (h/r);  then, as in  Equation (43) 

earlier:  

[(x)(x-1)···(x-n+1)] / [(x+r)(x+r-1)···(x+r-n+1)]  =  C*  < 1    

Dividing the numerator and denominator by (rn), the limit of this expression, as (r→∞), is: 

[(x/r)(x/r - 1/r)···(x/r - n/r + 1/r)] / [(x/r + 1)(x/r + 1 - 1/r)···(x/r + 1 - n/r + 1/r)] 

  =    (x/r)n / [(x/r) + 1]n   =  C*  < 1            

or:   lim (x/r) = (C*) 1/n / [1 – (C*) 1/n ]   =   1 / [(1/C*)1/n – 1]        (48) 
                  r→∞ 
 

Thus, the ratio of (x/r) is a constant (in the limit) for any given n. 

There are also other constraints. Thus, because the “frequency of susceptibility” can never 

exceed 100%, it must be the case that: 

   (h/r)  ≤ 1.0   and, therefore:    (1/r)  ≤  (1/h)   =  4.17    

In addition, as indicated above, (x ≥ n) because, otherwise, HLA DRB1*1501 would be 

necessary for MS susceptibility. 

Earlier, in Equation (43), only the circumstance, in which (Pt0 = Pt1), was considered.  

Clearly, however, if (Pt0 ≠ Pt1), the observed proportion of individuals in the MS population who 

are HLA DRB1* 1501-negative (Cobs) will differ from the true proportion (C) of susceptible 

individuals.  Thus, more generally, the observed proportion of HLA DRB1* 1501-negative 

individuals (Cobs) will be:  

Cobs  =  [[(C)(Pt0)] / [(C)( Pt0)+( 1-C)( Pt1)] ]     
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After some rearrangement, this becomes: 

  [(Pt1 / Pt0)]   =  [(C) / (1- C)] / [(Cobs) / (1- Cobs)]        (49) 

In other words, the penetrance ratio (Pt1 / Pt0) is equal to the ratio of the true odds that a 

susceptible individual is HLA DRB1*1501-negative to the observed odds ratio that an individual 

with MS is HLA DRB1*1501-negative. In this case, the greater the proportionate penetrance of 

the HLA DRB1*1501 genotype, the greater the actual value of C relative to Cobs. 

The relationship between (x/r) in the limit and (n) in Equation (48) can also be 

determined. Thus, letting (m > 0) be an arbitrary constant, then the ratio between the limiting 

value of (x/r) when (n = m·t) to that when (n = t) is: 

(x/r)mt / (x/r)t   =   [(1/C*)1/t – 1] / [(1/C*)1/mt – 1]             (50) 

where (x/r)mt and  (x/r)t   are the limiting values of (x/r) at the two levels of (n). 

Because both the numerator and the denominator tend to 0 as (t→∞), the limiting value of: 

  lim [(1/C*)1/t – 1] / [(1/C*)1/mt – 1]  =  0 / 0           
                                    t→∞ 

which is indeterminate. However, by l’Hôpital’s rule, the limit of the ratio of the derivatives of 

two functions is equal to the limit of the ratio of the functions themselves under these 

circumstances, so that: 

  lim [(1/C*)1/t – 1] / [(1/C*)1/mt – 1]  =  lim (m)[(C*) (m-1)/t ]  =   m       (51) 
                   t→∞                                                                                    t→∞ 

Thus, even though, at a particular value of C* (e.g., C*  =  C0*), both (x/r) and (n) tend toward to 

infinity with increasing values of n, the relationship between them, in the limit, is linear.  

Thus, in the limit:  

(x/r) = kn             (52) 

where k is the slope of the line relating the two variables.  Moreover, if we let (C0*) represent the 

value of C* when (Pt0 = Pt1), and if we let C1* be the value of C* at some point where  
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(Pt0 ≠ Pt1), then, for some (b > 0) and for the value of C* determined by Equation (43), we can 

define: 

C1*  =  (C0*)1/ b             (53) 

where:    b  =  [ln(C0*)] / [ln(C1*)]        

Moreover, because:            (C1*)1/ n  =  [(C0*)1/ b] 1/ n =  (C0*)1/ bn 

then, by Equation (53): 

    lim [(1/C0*)1/n – 1] / [(1/C0*)1/bn – 1]  =   b        (54) 
                     n→∞    
                                                                               

so that (x/r) = kbn, where b represents the change in slope of the line that follows from Equation 

(53)  based on the movement of C* from C0* to C1* due to a change in the ratio of (Pt1 / Pt0). 

The slope of the new line is (kb), so that in order to determine its value one needs to calculate 

both (k) and (b).  However, if, instead of picking C0* at (Cobs / [0.76]), we pick a reference value 

such that: 

    C0*   =  (1/e)  =  0.368  

then the slope of the line (k) at C0* following from Equation (52) is equal to (1) and, thus, the 

value of (b) represents the slope of the line at any value of C1*. Using this as the reference, the 

slope of the line at (C1* = Cobs/(0.76) = 0.59), in the limit, is: 

 

      b  =  [ln(C0*)] / [ln(C1*)]  =  ln(1/e) / ln(0.59)  =  (-1) / (-0.52)  =  1.9                 (55)
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3.  Prevalence and Concordance 

The prevalence (probability) of MS in the general population converges in the limit. 

Thus, re-stating Equation (45): 

                                                 1 

P(MS) =    (Σ  [(Pt*)][(1)!/(i)! (1-i)!][(h)i (1- h)1-i] )  · 
                                               i = 0 

                                                                         n-i-1  

                 [ 1   -   (Σ   [(x)! / (x-j)! (j)!] [ (h/r)j (1-h/r)x-j] ) ]    
                                                             j = 0 

Thus, in Equation (45), for any fixed (i and n), the expression:  

           n-i-1  

         Σ   [ (x)!/(x-j)!(j)!][(h/r)]j[(1- h/r)]x-j  
           j= 0 
  
                 n-i-1 

=    Σ   [ [x/r - n/r]···[x/r - n/r - j/r +1/r] /  (j)!] [(h)]j [(1- h/r)]x-j
          

                          j = 0 
 
As (r→∞), this expression becomes: 
 
                 n-i-1 

=    Σ   [[(x/r)j / (j)!][(h)] j [(1-(h/r)] (x/r)(r)]          (56) 
                           j = 0 

By Equation (48), the expression [(x/r)j / (j)!][(h)]j is constant for any given n, h, and j.   

Moreover, because 

  lim (1-a/r)br = e-ab                (57) 
                                    r→∞ 

the expression [(1-(h/r)] (x/r)(r) is also a constant (in the limit) and is equal to e-(x/r)(h).    
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Thus, as (r→∞),  PMS approaches the limit: 

                                                 1 

P(MS) =    (Σ  [(Pt*)][(1)!/(i)! (1-i)!][(h)i (1- h)1-i] )  · 
                                               i = 0 

                                                                           n-i-1  

                 [ 1   -    (Σ   (x/r)j / (j)!][(h)j][e-(x/r)(h)] ) ]        (58) 
                                                                j = 0 

which is a finite constant for any fixed n and h.  

Moreover, in the last expression, in the limit for the summation over (j) is equivalent to 

partial summations of a Poisson distribution. Thus, for the summation over (j), this becomes: 

               n-i-1 

=    Σ   (λj e–λ) / (j)!,  where λ = (x/r)(h)         
                            j = 0 

Because, in the limit, (x/r) = bn (from Equation [55] and using the reference C0* = e-1), the 

equation for mean of the Poisson distribution (λ) becomes: 

λ  =   (b·h)(n)  =  (0.456)(n);        at (C1* = 0.59)  and  (h = 0.24)         (59) 

It is noteworthy, however, that, in the limit, for some constant (c > 0), as (n→∞),  

                                  n 

    lim   Σ  (cn)ke–cn / (k)!  =  0.5 ; when (c = 1)               (60) 
                                    n→∞    k = 0  
 

The point (c = 1) represents a divide for these summations.  Thus, if (c < 1) each sum (in the 

limit) will increase monotonically to (1). By contrast, if (c > 1) this sum will decrease 

monotonically to (0). This has implications for the possible values that (Pt1/ Pt0) can take. Thus, 

because the slope (b) increases as the ratio of (Pt1/ Pt0) increases, this means the constant term  

(c = bh) in Equation (59), which is less than 1 when (Pt1 = Pt0), will ultimately exceed 1 as 

(Pt1/Pt0) increases. At the point where this crossover occurs, the anticipated prevalence of MS 

from Equation (58) will increase with increasing values of (n), approaching a limit greater than 

0.1 - 0.2% and, thus, will never be compatible with the prevalence in the general population.  
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This crossover occurs when (b·h = 1) or when (b = 4.17) or, from Equation (54), at (C1* = 0.79 ; 

or: C1 = 0.60).  

Based on Equation (50), therefore, (Pt1/Pt0 < 1.8) and, with an average penetrance of 25% 

from Equation (44), this would mean that (Pt1 ≤ 0.32 and Pt0 ≥ 0.18) in monozygotic-twins. 

These derived limits fit well with the experimental observations from Canada (11) where the 

derived concordance rates for MS in HLA DRB1*1501-positive and HLA DRB1*1501-negative 

monozygotic-twin probands are approximately equal (Table 3).   

Similarly, the concordance rate for MS in siblings (not identical twins), with the proband 

being HLA DRB1* 1501-negative, also approaches a limit as (r→∞). Thus, for any fixed values 

of (i, j, k, m, and n), in summation over (p) in Equation (47) and for the conditions in which   

(i + j + k + m  ≤  n - 1), in the limit, Equation (47) becomes: 

 
                                  1 

 P(MSH-)  =   (Σ  [(Pt*)][(1)!/(i)! (1-i)!][( Ph1)i (1- Ph1)1-i] )  · 
                                    i = 0  
                                                                n-i-1 

                  [( 1   -    Σ   [(n1)!/(n1-j)!(j)!][ (PA1)j (1- PA1)n1-j] ) ·    
                                           j = 0 

                                                     n-i-j-1 

                                   (Σ    [(n2)!/(n2-k)!(k)!][ (PA2)k (1- PA2)n2-k] ) ·            
                                    k = 0 
 
                                                              n-i-j-k-1 

                                          (Σ    [(n3)!/(n3-m)!(m)!][ (PA3)m (1- PA3)n3-m] ) ·          
                                        m = 0 
 
                                                                      n-i-j-k-m-1  

                                                  (Σ   [ (x/r)p / (p)!][(h)p][e-(x/r)(h)] ) ]   
                                                                 p = 0 
 
 

In this equation, PA1 =  [(0.5)(1 + 2a1 – (a1)2)] and, because (a1→0) in the limit, this expression 

becomes: PA1 =  [0.5].   Similarly, in the limit, PA2 =  [0.25] and PA3 = [0.5].  Therefore, by 

Equations (48) and (50) above, P(MSH-) is a constant under these conditions.   
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Similarly, Equation (46) becomes: 

                                      1 

 P(MSH+)  =  (Σ  [(Pt*)][(1)!/(i)! (1-i)!][( PH)i (1- PH)1-i] )  · 
                                    i = 0  
                                                                 n-i-1 

                  [ ( 1   -    Σ   [(n1)!/(n1-j)!(j)!][ (PA1)j (1- PA1)n1-j] ) ·    
                                            j = 0 
 
                                                          n-i-j-1  

                                    ( Σ   [(n2)!/(n2-k)!(k)!][ (PA2)k (1- PA2)n2-kj] ) ·        
                                        k = 0 
 
                                                                    n-i-j-k-1  

                                           ( Σ   [(n3)!/(n3-m)!(m)!][ (PA3)m (1- PA3)n3-m] ) ·   
                                               m = 0 
 
 
                                                                               n-i-j-k-m-1  

                                          (Σ   [ (x/r)p / (p)!][(h)p][e-(x/r)(h)]  ) ] 
                                                                       p = 0 

which also a constant under comparable conditions. 

In addition, for any fixed values of (i, j, k, and m), in summation over (p) in Equation 

(47), where [Pa1 = Pa2 = Pa3 = (h/r)], and for conditions (i + j + k + m  ≤  n - 1), the expression:  

        n-i-j-k-m-1  

         Σ   [ (x-n)!/(x-n-p)!(p)!][(h/r)]p[(1- h/r)]x-p  
           p = 0 
  
 
                          n-i-j-k-m-1 

               =    Σ   [ [x/r - n/r]···[x/r - n/r - p/r +1/r] /  (p)!] [(h)]p [(1- h/r)]x-p
             (61) 

                              p = 0 
 
 
Which by Equations (53), (54), and (55) in the limit as (n→∞), becomes: 
 
 
                         n-i-j-k-m-1 

              =    Σ   [ [n(b - 1/r)]···[ n(b - 1/r)- p/r +1/r] /  (p)!] [(h)]p [(1- h/r)]x-p
              (62)     

                            p = 0 
 
As (r) ranges from 1 to 0.24, in Equation (61), the first factor [(x/r – n/r)] in each summand will 

become (0) at the point where (x = n) and, at this point of transition, the summation itself will 
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equal (0). However, because the ratio (x/r) approaches its limit of (bn) from above, the actual 

transition will occur closer to the point (bn). Thus, in Equation (62), as (n) increases and as (x/r) 

approaches (bn), this factor becomes equal to [n(b - 1/r)], this transition will occur closer to the 

point (b = 1/r) or, by Equation (55), when (r = 1/b = 1/1.9  = 0.53). Thus, as (n) increases (and, 

therefore as x increases), for all values of  (r ≤ 0.53) the summation will increasingly approach 0 

(more quickly for values of r closer to 0.24) and, by Equations (46) and (47), the probability of 

susceptibility for these genotypes will approach 1. Similarly, as the value of (r) approaches 0.53 

from above, the value of the summation will approach 0 although, even in the limit, it will be 

greater than 0 for all (r > 0.53).  
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4.  Susceptibility Stratified by HLA DRB1*1501 Status 

In the general population, susceptible genotypes that include the HLA DRB1*1501 allele, 

increase the odds of MS developing far out of proportion to the increase that occurs with other 

susceptible genotypes. For example, in a population of MS patients, the odds of randomly 

picking HLA DRB1*1501 allele from among all of the HLA DRB1 alleles is much greater than 

the same odds in the general population. Using the data from UCSF (J Oksenberg, personal 

communication) for the HLA DRB1*1501 allele (i.e., hm = 0.556 and ahm = 0.328), the odds ratio 

(OR) and is: 

   OR     =    [(ahm) / (1- ahm)] / [(ah)  / (1- ah)]  
 

  =     [(0.328) / (0.672)] / [(0.128) / (0.872)]    =   3.3 

Similarly, calculating (from Table 2) the ratio of the odds for possession of a single copy or a 

double copy of this allele in the MS population (hms and hmd, respectively) compared to the same 

odds in the general population (hs and hd, respectively) yields: 

OR (single copy)     =    [(hms) / (1- hms)] / [(hs)  / (1- hs)]  

     =     [(0.45) / (0.55)] / [(0.224) / (0.776)]    =   2.83 

OR (double copy)     =    [(hmd) / (1- hmd)] / [(hd)  / (1- hd)]  

    =     [(0.10) / (0.90)] / [(0.016) / (0.984)]    =   6.83 

These numbers give an estimate of the strength of this particular association.  
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Using the terminology from Section 1, and re-expressing Equation (2) to include the HLA DRB1 

locus for the probability of having (n) or more susceptible states at the (x+1) susceptibility loci 

in the general population is: 

                                                 1 

P[yn] =    (Σ  [(1)!/(i)! (1-i)!][(h)i (1- h)1-i] )  · 
                                               i = 0 

                                                                          x  

                            (Σ   [(x)! / (x-k)! (k)!] [ (h/r)k (1-h/r)x-k] )   
                                                          k = n-i 

which can be expanded as: 

                                                 1 

P[yn] =    (Σ  [(1)!/(i)! (1-i)!][(h)i (1- h)1-i] )  · 
                                               i = 0 

                                                             1 

                 (Σ   [(x)! / (x-j)! (j)!] [ (h/r)j (1-h/r)x-j] )  ·        (63)  
                                               j = 0 

                                                                         x-1  

                            (Σ   [(x)! / (x-k)! (k)!] [ (h/r)k (1-h/r)x-k] )   
                                                        k = n-i-j 

As discussed in the development of Equation (9), the probability of genetic susceptibility in the 

general population (P[n]) is defined as:     

E(P[yi])   ≈    P[n]    =    P[yn]          (64) 

As indicated in Table 1 and by Equations (3) and (44),  (Pt*) is defined such that:  

P(MS)  =  (Pt*)(P[yn])           (65)  

Using Equations (36) and (65), and letting (Pt0 = Pt1 = Pt*), the probability that an individual in 

the general population is both genetically susceptible to MS and carries the HLA DRB1*1501 

allele (Phm) as: 

  Phm    =   (hm)(P[n])   ≤   (2)(hm)[P(MS) / Pt*]               
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Substituting into this equation the epidemiological observations of:     

  P(MS)  ≈  0.0015;    (Pt* = 0.134);    and:    (hm = 0.55),  

 then: Phm   ≈    (2)(0.55)(0.0112)   =   0.0124 

Considering the prevalence of having at least one copy of HLA DRB1*1501 in the general 

population (h), the likelihood that an individual who carries this allele is actually susceptible to 

getting MS (P[S]HLA) is: 

  P[S]HLA  ≤  (Phm) / (h)  =  0.0124 / 0.24  =   5.2%              (66) 

This estimate is higher than the one made previously (10) because, those calculations, 

used the actual concordance (CRMZ) rather than the adjusted concordance (CRIG), which takes 

into account the shared intra-uterine and similar post-natal environments of twins. For the same 

reason, the estimated prevalence of susceptibility in the general population is: 

  P(MS) / Pt*  ≤  2.2% 

which is also higher than that estimated earlier (10). 

By contrast, letting (Pnhm) be the probability that an individual in the general population is both 

genetically susceptible to MS and does not carry the HLA DRB1*1501 allele, then: 

  Pnhm  =  (1 - hm) (PMS / Pt*)  =  (0.45)(0.0112)  =  0.0050 

and the likelihood of being susceptible to getting MS for an individual who doesn’t carry this 

allele (P[S]HLA-) is: 

P[S]HLA-  =  (1 – Pnhm) / (1 - h)  =  0.0050 / 0.76  =   0.7%          (67) 

From Equations (66) and (67), it is apparent that individuals who carry the HLA DRB1*1501 

allele are (3.94) times as likely to be susceptible to getting MS than those who don’t. 

Importantly, however, this observation is not only a reflection of the increased likelihood of 
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susceptibility due to possession of this allele. It is also due, in part, to the fact that, because the 

HLA DRB1*1501 allele is known to be a true susceptibility allele, possession of this allele 

provides information about the group who carry it. By contrast, no such information is available 

for the group who don’t carry it. Thus, if the general population were to be stratified on the basis 

of another true susceptibility allele, the likelihood of susceptibility would also be increased in 

those that possess this allele. 

In order to help disentangle these possibilities, therefore, it will be useful to define two 

other functions. Thus, in Equation (63), for some integer (t), we will define the functions: 
                                                                     x 

P’[n-t]   =    (Σ   [(x)! / (x-k)! (k)!] [ (h/r)k (1-h/r)x-k] )    
                                                    k = n-t 

                                                                      x-1 

and:  P’’[n-t]   =    (Σ   [(x)! / (x-k)! (k)!] [ (h/r)k (1-h/r)x-k] )    
                                                       k = n-t 

Using these relationships, the HLA DRB1 locus can be expanded out of Equation (63) such that:  

  P[yn]   =   P[n]   =  (1 – h)(P’[n]) + (h)(P’[n-1])        (68) 

and, from Equation (65):   

P(MS)  =   (Pt*)(P[n])  =  (Pt*)[(1 – h)(P’[n])  +  (h)(P’[n-1])]         (69) 

 Because (n) is similar to an average number of necessary loci, Equations (68) actually 

asserts only that the two summands add to the “average” value. Thus, if we define (b) and (c) to 

be unknown constants we can rewrite Equation (68) to be:  

         P[n]  =  (b)(1 – h)(P’[n])  +  (c)(h)(P’[n-1])         (70) 

Expanding the non-HLA locus in Equation (70) yields: 
 

P[n]  =  (1 – h)(b)[(1 – h/r)(P’’[n]) + (h/r)(P’’[n-1])] 

                                        + (h)(c)[(1 – h/r) (P’’[n-1]) + (h/r)(P’’[n-2])]        (71)  
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 If we define [PHM] as the probability that a susceptible individual in the general 

population carries the HLA DRB1*1501 allele, and [FM] as the probability that a susceptible 

individual in the general population is in a susceptible allelic state at a specific non-HLA DRB1 

locus, then: 

(1 – h)(b)[(1 – h/r)(P’’[n]) + (h/r)(P’’[n-1])]   =   (1 – PHM)       (72) 

(h)(c)[(1 – h/r)(P’’[n-1]) + ((h/r)(P’’[n-2])]           =   (PHM)       (73) 

(1 – h/r)[1 – h)(b)(P’’[n]) + (h)(c)(P’’[n-1])]    =   (1 – FM)       (74) 

(h/r)[(1 – h)(b)(P’’[n-1]) + (h)(c)(P’’[n-2])]  =   (FM)            (75)   

where, if (Pt1 ≈ Pt0), then (PHM ≈ hm and FM ≈ Fm).   Using Equation (69) and expanding yields: 

P(MS)  =  (Pt*)[(1 – h)(b)[(1 – h/r)(P’’[n])  +  (h/r)(P’’[n-1])] 

                   +  (h)(c)[(1 – h/r) (P’’[n-1])  +  (h/r)(P’’[n-2])]]       (76) 

From Equation (76), it is apparent that one interpretation of these two constants is that 

they reflect a different penetrance for susceptible genotypes with and with out the HLA 

DRB1*1501 allele. Therefore, from this perspective: 

   Pt0  =  (Pt*)(b) 

and:   Pt1  =  (Pt*)(c)  

Obviously, if (b = c = 1), then (Pt1 = Pt0) and, thus, (PHM = hm and FM = Fm). However, under 

conditions where (Pt1 ≈ Pt0), as suggested by Table 2, but where (b ≠ c ≠ 1), the meaning of these 

constants has a different interpretation. In fact, as shown in Table 9, substituting the known or 

derived values for (n), (r), (x) and (h), into Equation (63) and using Equation (73) to calculate 

(PHM = hm) at (b = c = 1), gives a figure of (hm ≈ 0.43), which underestimates its observed value 

(i.e., hm = 0.55). Importantly, the degree to which (hm) is underestimated for specific values of 

(n), (r), and (x) actually provides a means to estimate the values of the unknown constants (b) 



 17 

and (c) in different circumstances and, in fact, from Equation (71) it is clear that in order to 

increase the estimate of (hm) from (~0.43) to (0.55) requires that (b < 1.0) and (c > 1.0).  

 Moreover, because for all integers (t > 0):  

P[yn+t] <  P[yn] 

and:   P[yn-t] >  P[yn]      

and, because (b < 1.0) and (c > 1.0), it follows from Equation (70) that, for some pair of integers 

(t1) and (t2): 

 1 - PHM   =   ( 1– h)[(b)(P’[n])]   =  (1 – h)(P’[(n+t1)])  <  (1 – h)(P’[n])        (77) 

and:     PHM     =   (h)[(c)(P’[n-1])]   =  (h)(P’[(n-t2)-1])  >  (h)(P’[n-1])       (78) 

From Equation (64) and from the Section 1 of the main paper, (n) is the integer that most nearly 

approximates the equality: 

   P’[n-1]  ≈  E(P’[yi-1 ])  

so that, in Equations (77) and (78), the integers (t1) and (t2) are those that most nearly 

approximate the equalities: 

   P’[(n+t1)]  ≈  E(P’[yi+t1]) 

P’[(n-t2)-1]  ≈  E(P’[(yi-t1-1])  

Consequently, the fact that (b < 1.0) and (c > 1.0), and the fact that (Pt1 ≈ Pt0), imply that the 

susceptibility genotypes which carry the HLA DRB1*1501 allele are require fewer susceptibility 

loci to be in a susceptible state compared to susceptibility genotypes that don’t carry this allele. 

Moreover, (P’[n + t1]) and (P’[n – t2 –1]) can be calculated for different integer values for 

specific combinations of (n), (r), (x) and (h).  
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As a result, using the best approximation for (t1) and (t2) in the following two equations: 

 P’(n  + t1) / P’(n)     =  b          (79) 

P’(n  – t2 – 1) / P’(n – 1) =  c          (80) 

provides a method to estimate the difference in the number of required loci for each of these two 

susceptibility states.     

Clearly, the inclusion of the two constant terms in Equation (70) impacts the expected 

odds ratio for the HLA DRB1*1501 allele in MS, raising it from the expected (OR  ≈ 2.2) under 

conditions (c = b = 1) to the observed  (OR = 3.3) under conditions where (c > 1 > b).  Similarly, 

the inclusion of these two constants will alter the expected odds ratio for the non-HLA DRB1 

loci because the constants (b) and (c) also appear in Equations (74) and (75).  For a dominant 

(a1m) or a recessive (a2m) non-HLA allele in a susceptible population, the anticipated odds ratios 

are: 

OR   =   [(a1m) / (1 - a1m)] / [(a1) / (1 - a1)]         

OR   =   [(a2m) / (1 - a2m)] / [(a2) / (1 - a2)]        (81) 

However, unlike the circumstance for the susceptible genotypes that carry the HLA 

DRB1*1501 allele, the odds ratio is only slightly altered by inclusion of these constant terms in 

the case of the non-HLA locus because they tend to offset each other. Thus, approximately half 

of the genotypes that have the non-HLA locus in a susceptible state will also carry the HLA 

DRB1*1501 allele and, as indicated by Equations (74) and (75) the multiplier for this locus will 

be a weighted average of both the (b) and (c) terms. 

Another possibility worth considering is the circumstance in which those genotypes 

homozygous for HLA DRB1*1501 either have greater penetrance than or require fewer 

susceptibility loci to be in a susceptible state compared to those genotypes with only one or no 

copies of this allele. Indeed, in the UCSF experience (i.e., hm = 0.556 and ahm = 0.328) from 

Table 2, it is apparent that the homozygous persons in an MS population are increased by a 

factor of (6.06) whereas heterozygous persons are only increased by a factor of (2.04).  The ratio 

of these two factors is (0.34). If a dominant susceptibility allele has a weighting function for 
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resulting in MS of (1, 1) for the heterozygous and homozygous states respectively, then the 

weighting function for a recessive allele is (0, 1). In the case of the HLA DRB1*1501 allele the 

observed weighting function is (0.34, 1) so that, although this locus confers susceptibility in a 

dominant fashion, the homozygous state results in MS much more frequently than the 

heterozygous state.  In this sense, then, this locus appears more recessive than dominant. Again 

there are two possibilities. Either the homozygous state has a greater penetrance than the 

heterozygous state or it requires fewer loci to be in a  “susceptible allelic state” to produce 

susceptibility. Because there are no data about the relative penetrance of the homozygous and 

heterozygous states, the issue cannot be settled. Regardless, however, the values of (b) and (c) 

are unchanged, so that, if this circumstance is not exclusively the result of a penetrance 

difference, the value of (t2) in the expression [P’(n  – t2 – 1)] in Equation (80) will be increased 

for the homozygous state and decreased for the heterozygous state. Even, so, this difference in 

(t2) is still amounts to no more that 1 or 2 loci. 
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5. Odds Ratios for Polymorphic Alleles or Multiple Genes at Susceptibility Loci 

 

Polymorphic Alleles 

 Because a susceptibility locus (i.e., haplotype), typically includes several distinct genes 

and because individual genes are often quite polymorphic, either or both of these complications 

may alter the familial recurrence rates in different conditions.  For example, the possibility of 

polymorphic alleles 

If there is only one  “dominant” susceptibility allele for the single susceptibility gene at a 

particular susceptibility locus, then the probability that a random individual in the population will 

be in a “susceptible allelic state” (Pa1) at this location is: 

Pa1   =    2(a1) - (a1)2    =   (h/r)  

the expected allelic frequency, in this circumstance, will be [a1 = 1 – (1 - h/r)1/2]. If (g) 

“dominant” alleles were present (a1i ;  for i = 1 to g;  with E[a1i] =  “a1”; where “a1” is the 

apparent allelic frequency), this equation would be unchanged, reflecting simply the sum of the 

frequencies [“a1”  =  (g)(a1)] of these different “dominant” alleles. Thus,   

Pa1   =    2(a11 + a12 +…+ a1g) - (a11 + a12 +…+ a1g)2     

        =    2[(g)(a1)] - [(g)(a1)] 2    =   (h/r)  

If there is only one  “recessive” susceptibility allele for the single susceptibility gene at a 

particular susceptibility locus, then the probability that a random individual in the population will 

be in a “susceptible allelic state” (Pa2) at this location will be: 

Pa2   =   (a2)2   =   (h/r)  

Therefore, the expected allelic frequency, in this circumstance, will be [a2 = (h/r)1/2]. If (g) 

“recessive” alleles were present (a2i ;  for i = 1 to g;  with E[a2i] =  “a2”; where “a2” is the 

apparent allelic frequency), this equation would be depend upon whether or not the heterozygous 
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states  [(a2i)(a2j);  i, j = 1 to g; i ≠ j] conferred susceptibility.  If they did, the sum of allelic 

frequencies would be equivalent to a single allelic trait with an apparent allelic frequency of 

[“a2”  =  (g)(a2)]. By contrast, if the heterozygous states (i.e., a person with two recessive alleles 

but not both the same allele) did not confer susceptibility, the equation would be altered such 

that:   
                                                                                                                              g                            g 

  (a21 + a22 +…+ a2g)2   =  [(g)(a2)]2  =  Σ (a2i)2  + 2 Σ (a2i)(a2j)  
                                                                                                    i = 1            i = 1, i < j 

and, omitting the heterozygote term, would yield: 

              g                          

Pa2  =  Σ (a2i)2   =  (g)(a2)2  =  (h/r) 
          i = 1            

 

so that the apparent allelic frequency is [“a2”  =  (g1/2)(a2)].  If the apparent allelic frequency 

(“a1” and “a2”) at a non-HLA susceptibility locus is increased in an MS population by a factor of 

(m) compared to the general population, the Equations (81) can be rewritten for the apparent 

allelic frequencies as: 

 

     OR   =   [(m · “a1”) (1 - “a1”)] / [(“a1”) (1 - {m · “a1”})]  

  = (m) ·  [( 1 - “a1”) / (1 - {m · “a1”})]         (82) 
        

     OR     =   (m) ·  [( 1 - “a2”) / (1 - {m · “a2”})] 

for dominant (“a1”) and recessive  (“a2”) genes respectively.  If there are (g > 1) susceptibility 

alleles present and, if the heterozygous states confer susceptibility for recessive alleles, these 

equations become: 

    OR   =      [(m · “a1” /g) / (1 - {m · “a1” /g })] / [(“a1” /g) / (1 - “a1” /g)]   

  =      (m) ·  [ 1 - “a1” /g]  / [1 - (m · “a1” /g )]              (83) 

    OR   =      (m) ·  [ 1 - “a2” /g]  / [1 - (m · “a2” /g )] 
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or, if the heterozygous states do not confer susceptibility for recessive alleles, then: 
 

     OR   =      (m) ·  [ 1 - “a1” /g1/2]  / [1 - (m · “a1” /g1/2 )] 

Equation (83) can be rewritten such that: 

OR = (m) ·  [(g-1) + (1 - “a1”)]  /  [(g - 1) + (1 - {m · “a1”})]        

and because (g  >  g1/2 > 1), the odds ratios, which are calculated from those Equations that 

include the factor (g > 1), as in Equation (83), are always less than that the odds ratio calculated 

for the apparent allelic frequency (“a1” and “a2”) as in Equation (82). 

 Importantly, however, although increasing the number of susceptibility alleles and a 

single susceptibility gene at a particular susceptibility locus affects the calculated “apparent” 

odds ratio compared to calculations for true alleles, this doesn’t affect the familial recurrence 

calculations for dominant alleles (i.e., the sibling still either does or doesn’t inherit the dominant 

allele from the parent who has it. By contrast, for recessive alleles, the situation would be 

different. For example, the calculated probability (PA2) in non-twin siblings, if the heterozygous 

state didn’t confer susceptibility, would be: 

PA2  =    [0.25][1 + a2]2  <  [0.25][1 + “a2”]2 

Naturally, the predicted prevalence of MS in the general population would not be affected by any 

of these considerations because the frequency of susceptibility at each non-HLA locus (h/r) is the 

same regardless of the number of alleles that comprise this susceptibility.  

 

Multiple Genes 

It is also possible that a single susceptibility locus might harbor more than one 

susceptibility gene among the collection of genes in the haplotype. In this case, the terms: 

             (a11, a12 , … a1g)   and   (a21, a22 , … a2g) 
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refer to dominant and recessive susceptibility alleles in the (g) different genes at one 

susceptibility locus. If each allele is dominant (i.e., a single copy confers susceptibility regardless 

of the state at the other [g - 1] genes), then the apparent allelic frequency (“a1”) at this locus will 

still be defined by: 

Pa1   =    2(a11 + a12 +…+ a1g) - (a11 + a12 +…+ a1g)2     

        =    2[(g)(“a1”)] - [(g)(“a1”)] 2    =   (h/r)  

Similarly, if each allele is recessive (i.e., two copies of the susceptibility allele in one 

gene confers susceptibility regardless of the state at the other [g - 1] genes), then the apparent 

allelic frequency (“a2”) will still be defined by: 

Pa2  = (g)(“a2”)2  =  (h/r) 

However, in the circumstance where several susceptibility genes are present at a single locus, a 

mixture of dominant and recessive alleles or interactions between the different susceptibility 

genes, will likely make the situation quite complicated. Nevertheless, as above for polymorphic 

recessive alleles (where heterozygotes did not confer susceptibility), these interactions and 

circumstances will reduce the predicted familial recurrence rates for both dominant and recessive 

alleles, and they will lower the observed odds ratios, but they will not impact the predicted 

prevalence because, again, the frequency of susceptibility at each non-HLA locus (h/r) is the 

same regardless of either the number of genes that comprise this susceptibility or their 

interactions.  

 

Single Nucleotide Polymorphisms (SNPs) 

 

 Current genome-wide association scans use SNPs to identify regions of the different 

chromosomes that are associated with a particular illness. In general (assuming the location of 

SNPs is random), the DNA at a particular SNP location will typically be in one of only two 

states.  Occasionally, a SNP is known to cause a functional change in the gene (e.g., introducing 
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a stop codon or a non-synonymous amino acid substitution, altering splice sites, or changing the 

binding characteristics of regulatory molecules) and it may well be, in these cases, that the SNP 

uniquely tags the allele of interest (e.g., 33, 34). However, in other cases, if there are more than 

two alleles for a particular susceptibility gene at a particular susceptibility locus (only some of 

which produce susceptibility), it is possible that any particular SNP will tag both susceptibility 

alleles and non-susceptibility alleles. Such a circumstance will affect the observed OR.  

As an example, suppose there are 3 alleles of a single susceptibility gene at a particular 

susceptibility locus. as shown pictorially below. 

                        susceptibility locus               SNP locus 

Allele NS1 ……...T…….…………………….G…………….. 

Allele NS2 ……...T……..……………………C……………. 

Allele S3 ……...A……..……………………C……………. 

Further suppose that one of these alleles (S3), with an allelic frequency of (s) produces a 

susceptible state at this locus whereas the other two alleles (NS1 and NS2), each with an allelic 

frequency of (ns), do not. Suppose also that the DNA at a particular SNP location is in one state 

on both the S3 and the NS2 alleles but in another state on the NS1 allele and finally, suppose that 

the allelic frequency of the S3 allele is increased by a factor of (m) in a population of MS 

patients. In this example, the true OR would be: 

OR   =   [(m · s) /  (1 - {m · s})]  / [(s) /(1 - s)]  

Whereas the observed odds ratio would be: 

OR   =   [(nsm + m · s) /  (1 - {nsm + m · s})]  / [(ns + s) /(1 - {ns + s})]  

where (nsm = [1 - m · s] /2). 
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In the circumstance of a dominant allele, similar to the HLA DRB1*1501 allele, where: 

  (s  =  0.128),  (m · s  = 0.324), (ns = 0.436), and (nsm = 0.336) 

The odds ratio will be reduced from (OR = 3.3) to: 

 OR  = (0.664 / 0.336) / (0.564 / 0.436)  = 1.5 

For a less common allele (e.g.,  r = 4;  and m unchanged) where:  

(s  =  0.03),  (m · s  = 0.08), (ns = 0.485), and (nsm = 0.460) 

Then the odds ratio will reduced from (OR = 2.8) to: 

OR  =  (0.540 / 0.460) / (0.515 / 0.485)  = 1.1 
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6. TABLES 

 

Table 1. Model Definitions 

ah = allelic frequency of the HLA DRB1*1501 susceptibility allele in the 

general population (only one copy needed for susceptibility) 

ahm = allelic frequency of the HLA DRB1*1501 susceptibility allele in the MS 

population (ahm = 0.328 in UCSF database) 

a1, a2, a3 = expected allelic frequency of dominant (a1), recessive (a2), and mixed (a3) 

alleles at the non-HLA DRB1 loci in the general population 

a1m, a2m, a3m = allelic frequency of dominant (a1m), recessive (a2m), and mixed (a3m)  

alleles at the non-HLA DRB1 loci in an MS population 

Fi, F = unknown “frequency of susceptibility” (see text for definition) at the non-

HLA loci in the general population (i = 1, 2,…x).      [E(Fi) =  F  =  h/r)]    

Fm = “frequency of susceptibility” at a non-HLA locus in an MS population  

h = known “frequency of susceptibility” at the HLA DRB1 locus in the general 

population (equal to the probability of having at least 1 copy of this allele) 

[h  =  2ah  -  (ah)2  =  0.24] 

hm = known “frequency of susceptibility” at the HLA DRB1 locus in the MS 

population (equal to the probability of having at least 1 copy of this allele) 

[in the UCSF dataset;  hm  =  0.55] 

Pa1, Pa2, Pa3 = probability that a person in the general population has a “susceptible allelic 

state” (see text for definition) at dominant (Pa1), recessive (Pa2 ), and  

mixed (Pa3) non-HLA DRB1 loci. (Pa1  =  Pa2  = Pa3  = F  =  h/r) 

Ph1 = probability that person with an HLA-negative sibling (not an identical- 

twin) has at least one copy of the HLA DRB1*1501 allele 
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PH = probability that an individual with an affected HLA DRB1*1501 positive  

sibling has at least one copy this gene 

PA1, PA2, PA3 = probability that an individual will inherit a “susceptible allelic state” given 

that their sibling is known to be in this state (see text for definition) at 

dominant (Pa1), recessive (Pa2 ), and mixed (Pa3) non-HLA DRB1 loci.  

x (x1, x2, x3) = number of non-HLA DRB1susceptibility genetic loci involved in MS 

(dominant loci = x1; recessive loci = x2; mixed loci = x3).                          

[x1 + x2 + x3 = x] 

PHM = Probability that an individual (from the general population) is both 

susceptible to getting MS and carries the HLA DRB1*1501 allele. 

(if  Pt1 = Pt0;  then  PHM = hm) 

PAM = Probability that an individual (from the general population) who is both 

susceptible to getting MS and is in a susceptible state at a specific non-

HLA DRB1 locus. (if  Pt1 = Pt0;  then PAM = Fm) 

r = ratio of the “frequency of susceptibility” at the HLA DRB1 locus to the 

average “frequency of susceptibility” at other non-HLA DRB1 loci.           

[r = h/F] 

n (n1, n2, n3) = number of loci in “susceptible allelic states” required for MS to develop 

(dominant loci = n1;  recessive loci  = n2; mixed loci = n3).                         

[n1 + n2 + n3  = n] 

P[n] = probability of an individual in the general population possessing at least    

n loci in a “susceptible allelic state” 

C = proportion of patients, susceptible to MS, who do not have any copies of 

the HLA DRB1*1501 allele 
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P[S] = probability that an individual in the general population is susceptible to MS 

This probability is the same as P(G). 

Pt = average  penetrance of MS phenotype in susceptible patients. Also equal to 

the proband-wise monozygotic-twin concordance rate (CRMZ). 

Pt* = average penetrance of MS phenotype in susceptible patients, adjusted for 

non-twin siblings.   [ Pt*  =  (Pt) (2.9/5.4) ]        (See text) 

Pt1 = average penetrance of MS phenotype in susceptible patients with at least 

one copy of the HLA DRB1*1501 allele. Also equal to the proband-wise 

monozygotic-twin concordance rate (ZH+) for this genotype. 

Pt0 = average penetrance of MS phenotype in susceptible patients without any 

copies of the HLA DRB1*1501 allele. Also equal to the proband-wise 

monozygotic-twin concordance rate (ZH-) for this genotype 

P(MSH+) = Probability of recurrence (i.e., the recurrence rate) in a family member of 

an MS proband who has at least one copy of the HLA DRB1*1501 allele. 

P(MSH-) = Probability of recurrence (i.e., the recurrence rate) in a family member of 

an MS proband who lacks the HLA DRB1*1501 allele. 

P(MS) = prevalence of the MS phenotype in the general population (equated to the 

life-time probability of getting MS) 

P(G) = Probability of having any genotype capable of getting MS in response to 

some environmental exposure 

P(E) = Probability of receiving any environmental exposure (all factors) sufficient 

to cause MS in some susceptible individual 

CRMZ = proband-wise monozygotic-twin concordance rate for MS. 

 



 29 

CRIG = proband-wise monozygotic-twin concordance rate for MS adjusted for 

impact of a shared intrauterine environment. [CRIG  =  (CRMZ) (2.9/5.4)] 

This variable is the identical to (Pt*) but is used for clarity of the text. 

CRDZ = proband-wise dizygotic-twin concordance rate for MS. 

ZH+ = proband-wise monozygotic-twin concordance rate for MS when the 

proband possesses at least one copy of the HLA DRB1*1501 allele. 

ZH- = proband-wise monozygotic-twin concordance rate for MS when the 

proband does not possess a copy of the HLA DRB1*1501 allele. 

CRS = concordance rate for the MS phenotype in a non-twin sibling (1st degree) 

CRPC = concordance rate for the MS phenotype in a Parent or Child (1st degree) 

CRAU = concordance rate for the MS phenotype in an Aunt or Uncle (2nd degree) 

CRFC = concordance rate for the MS phenotype in a First Cousin (3rd degree) 
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Table 2. Epidemiological Data Used in the Model‡
 

 Population Men Women 

Prevalence of MS [P(MS)] * 150 71.4 228.6 

MZ twin Concordance (CRMZ) * 25% 6.5% 34.0% 

Raw % Susceptible [P(MS)] / CRMZ)* 0.6% 1.1% 0.7% 

Corrected % Susceptible** 1.1% 2.0% 1.3% 

%  HLA DRB1*1501   (General Population) * 24%   

%  HLA DRB1*1501   (MS Population) * 55%   

Homozygous DRB1*1501 (General Population) † 1.6%   

Homozygous DRB1*1501 (MS Population)† 10.0%   

‡ For estimated recurrence risks in 1st, 2nd, and 3rd degree relatives; see Table 12   

 For estimated recurrence risk in HLA DRB1*1501 positive and negative patients; 

see Table 3. 

* From Canadian Data (11), based on prevalence of 150/100,000 population (16) 

and split into men and women according to (17). HLA data: D Sadovnick 

(personal communication) 

** Percent of the population genetically susceptible to susceptible to MS 

[P(MS)]/CRMZ] corrected (see text) for the reported (11) difference in 

concordance risk for DZ twins (5.4%) and non-twin siblings (2.9%)  

† UCSF Database: J Oksenberg (personal communication)
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Table 3. MS Concordance rates in Monozygotic Twins of HLA DRB1*1501-positive (ZH+) and 

HLA DRB1*1501-negative (ZH-) Probands *. 

 Monozygotic Twins of MS Probands  

 HLA DRB1*1501 

Positive 

HLA DRB1*1501 

Negative 

Totals 

Concordant for MS (C) 9 11 20 

Discordant for MS (D) 31 42 73 

Totals 40 53 93 

Pair-wise Concordance† ZH+ = (9/40) = 23% ZH- = (11/53) = 21%  

Proband-wise 

Concordance†† 

ZH+  =  31% ZH-  =  29%  

Proband-wise 

Concordance 

(Adjusted) ††† 

ZH+  =  17% ZH-  =  16%  

  *   Data derived from: Willer et al., 2003 (11) 

†   Pair-wise rates calculated as (Z = C/(C + D).   

  †† Proband-wise concordance rates calculated as (Z = 2C/(2C + D) adjusted 

(21) for the overall probability of doubly ascertaining concordant twin-

pairs (54%) in the Willer, et al., 2003 (11) study.  

  ††† See Text, Equation (20) 
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Table 4 (4a). The total number of non-HLA susceptibility genes (x) based on the number of susceptibility genes 

necessary for MS to develop (n), and the frequency of susceptibility at the non-HLA susceptibility locations in the 

population (Pt0 = Pt1). 

 Number of Susceptibility Genes Required  (n) 
 5 10 11 12 13 14 15 

Frequency of 
Susceptibility 

(r) 
Estimated Total Number of non-HLA Susceptibility Genes (x) 

r = 0.25 5 11 12 13 14-15 15-16 16-17 
r = 0.33 6 12 13-14 14-15 16 17-18 18-19 
r = 0.5  7 14-15 16-17 17-19 19-20 21-22 22-23 
r = 1 11-12 23-25 25-27 28-30 30-32 33-35 35-37 
r = 2 18-22 40-44 45-48 49-53 53-57 58-61 62-66 
r = 4 35-42 75-83 83-91 92-99 100-107 108-116 116-124 
r = 8 67-82 146-161 162-177 177-193 193-208 209-224 225-240 

r = 16 131-162 287-317 318-348 349-379 380-410 411-441 442-472 

Frequency of 
Susceptibility 

(r) 
Estimated Prevalence (Target = 0.1 - 0.2%) 

r = 0.25 11.5% 12.7% 12.7% 12.4% 12.3 – 13.2% 12.1 – 13.2% 12.0 – 13.1% 
r = 0.33 7.5% 5.2% 4.4 – 6.7% 3.7 – 5.9% 5.1% 4.4 – 6.4% 3.8 – 5.7% 
r = 0.5  3.5% 1.2 – 2.0% 1.4 – 2.1% 0.9 – 2.2% 1.1 – 1.6% 1.2 – 1.7% 0.8 – 1.2% 
r = 1 1.8 – 2.4% 0.6 – 1.0% 0.4 – 0.7% 0.4 – 0.7% 0.28 – 0.48% 0.27 – 0.45% 0.19 – 0.33% 
r = 2 1.1 – 2.0% 0.3 – 0.6% 0.28 – 0.43% 0.21 – 0.37% 0.16 – 0.28% 0.14 – 0.21% 0.10 – 0.18% 
r = 4 1.0 – 1.9% 0.26 – 0.47% 0.20 – 0.36% 0.16 – 0.27% 0.12 – 0.21% 0.10 – 0.17% 0.07 – 0.13% 
r = 8 1.0 – 1.8% 0.24 – 0.42% 0.18 – 0.32% 0.14 – 0.25% 0.11 – 0.19% 0.08 – 0.14% 0.06 – 0.11% 
r = 16 0.9 – 1.7% 0.23 – 0.40% 0.17 – 0.30% 0.13 – 0.23% 0.09 – 0.18% 0.08 – 0.13% 0.06 – 0.10% 

limit 1.27% 0.29% 0.22% 0.17% 0.13% 0.10% 0.07% 
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Table 5 (4b). The total number of non-HLA susceptibility genes (x) based on the number of susceptibility genes 

necessary for MS to develop (n), and the frequency of susceptibility at the non-HLA susceptibility locations in the 

population (Pt0 = Pt1). 

 Total Number Susceptibility Genes Required (n) 
 16 17 18 30 40 50 60 

Frequency of 
Susceptibility 

(r) 
Estimated Total Number of non-HLA Susceptibility Genes (x) 

r = 0.25 18 19 20 - 21 33-35 44-46 56-58 67-71 
r = 0.33 19-20 21 22 - 23 36-38 49-51 61-64 74-80 
r = 0.5  24-25 25 - 26 27 - 28 44-47 60-62 75-78 91-101 
r = 1 37-39 40-42 42 - 44 71-75 95-100 120-124 144-166 
r = 2 66-70 71-74 75 - 79 125-133 168-176 212-220 255-300 
r = 4 124-132 132-140 140 - 148 234-250 316-331 397-413 478-569 
r = 8 240-256 256 - 271 272 - 287 453-484 611-642 769-800 926-1109 
r = 16 473-503 504 - 535 535 - 566 892-953 1202-1264 1512-1574 1823-2000 

Frequency of 
Susceptibility 

(r) 
Estimated Prevalence (Target = 0.1 - 0.2%) 

r = 0.25 13.1% 13.1% 13.0 – 13.3% 13.0 – 13.4% 13.1 – 13.4% 13.4% 13.4% 
r = 0.33 3.2 – 5.0% 4.4% 3.8 – 5.6% 1.7 – 3.5% 1.6 -3.4% 1.0 – 3.1% 1.0 – 5.4% 
r = 0.5  0.9 – 1.3% 0.6 – 1.0% 0.7 – 1.0% 0.10 – 0.35% 0.05 – 0.11% 0.01 – 0.05% 0.00 – 0.20% 
r = 1 0.14 – 0.24% 0.14 – 0.23% 0.10 – 0.17% 0.00 – 0.03% 0.00 – 0.00% 0.00 – 0.00% 0.00 – 0.00% 
r = 2 0.07 – 0.14% 0.07 – 0.10% 0.05 – 0.09% 0.00 – 0.00% 0.00 – 0.00% 0.00 – 0.00% 0.00 – 0.00% 

r = 4 0.06 – 0.10% 0.04 – 0.08% 0.03 – 0.06% 0.00 – 0.00% 0.00 – 0.00% 0.00 – 0.00% 0.00 – 0.00% 

r = 8 0.05 – 0.09% 0.04 – 0.07% 0.03 – 0.05% 0.00 – 0.00% 0.00 – 0.00% 0.00 – 0.00% 0.00 – 0.00% 

r = 16 0.05 – 0.08% 0.03 – 0.06% 0.03 – 0.05% 0.00 – 0.00% 0.00 – 0.00% 0.00 – 0.00% 0.00 – 0.00% 

limit 0.06% 0.04% 0.03% 0.00% 0.00% 0.00% 0.00% 
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Table 6 (5a). Predicted concordance rates of MS in siblings of MS probands assuming (Pt0 = Pt1) and either 100% 

Dominant genes or 100% Recessive genes (Target = 2.9 – 3.8% is colored in yellow; optimal solution colored in 

green). 

 Number of Susceptibility Genes Required (n) 
 5 10 11 12 13 14 15 

Frequency of 
Susceptibility 

(r) 
Predicted Concordance in Non-twin Siblings (100% of Genes Dominant) 

r = 0.25 12.6% 13.2% 13.2% 13.2% 13.1 – 13.4% 13.1 – 13.4% 13.0 – 13.4% 
r = 0.33 10.9% 10.7% 9.8 – 11.4% 10.2% 10.7% 10.3 – 11.6% 9.9 – 11.3% 
r = 0.5  8.5% 7.9 – 9.1% 7.7 – 8.9% 6.9 – 9.3% 7.5 – 8.6% 8.0 – 9.0% 7.3 – 8.4% 
r = 1 7.4 – 8.2% 6.4 – 7.6% 6.3 – 7.4% 6.6 – 7.6% 6.3 – 7.3% 6.5 – 7.5% 6.2 – 7.2% 
r = 2 6.6 – 8.0% 6.4 – 7.5% 6.4 – 7.1% 6.2 – 7.2% 6.1 – 7.0% 6.2 – 6.8% 6.0 – 6.9% 
r = 4 6.7 – 7.9% 6.3 – 7.3% 6.1 – 7.1% 6.2 – 7.0% 6.1 – 6.9% 6.0 – 6.9% 6.0 – 6.8% 
r = 8 6.6 – 7.9% 6.3 – 7.2% 6.2 – 7.1% 6.1 – 7.0% 6.0 – 6.9% 6.0 – 6.8% 6.0 – 6.7% 

r = 16 6.6 – 7.9% 6.3 – 7.2% 6.1 – 7.0% 6.1 – 6.9% 6.0 – 6.8% 6.0 – 6.8% 5.9 – 6.7% 

Frequency of 
Susceptibility 

(r) 
Predicted Concordance in Non-twin Siblings (100% of Genes Recessive) 

r = 0.25 12.6% 13.2% 13.2% 13.1% 13.1- 13.4% 13.1 – 13.4% 13.2 – 13.4% 
r = 0.33 10.8% 10.1% 9.6 – 11.3% 9.1 – 10.9% 10.5% 10.1 – 11.5% 9.7 – 11.2% 
r = 0.5  8.1% 6.4 – 7.8% 7.0 – 8.2% 6.2 – 8.6% 6.7 – 7.9% 7.2 – 8.3% 6.5 – 7.6% 
r = 1 6.4 – 7.2% 5.2 – 6.3% 4.8 – 5.9% 5.0 – 6.0% 4.6 – 5.6% 4.8 – 5.7% 4.5 – 5.4% 
r = 2 5.0 – 6.5% 4.1 – 5.1% 4.1 – 4.8% 3.9 – 4.8% 3.7 – 4.5% 3.7 – 4.3% 3.5 – 4.3% 
r = 4 4.8 – 6.0% 3.5 – 4.4% 3.3 – 4.2% 3.3 – 4.0% 3.1 – 3.8% 3.0 – 3.7% 2.8 – 3.5% 
r = 8 4.3 – 5.7% 3.1 – 4.0% 3.0 – 3.7% 2.8 – 3.5% 2.6 – 3.3% 2.5 – 3.1% 2.4 – 3.0% 

r = 16 4.0 – 5.4% 2.8 – 3.6% 2.7 –3.4% 2.5 – 3.2% 2.3 – 3.0% 2.2 – 2.8% 2.1 – 2.6% 
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Table 7 (5b). Predicted concordance rates of MS in siblings of MS probands assuming (Pt0 = Pt1) and either 100% 

Dominant genes or 100% Recessive genes (Target = 2.9 – 3.8% is colored in yellow). 

 Number of Susceptibility Genes Required (n) 
 16 17 18 30 40 50 60 

Frequency of 
Susceptibility 

(r) 
Predicted Concordance in Non-twin Siblings (100% of Genes Dominant) 

r = 0.25 13.4% 13.4% 13.3 – 13.4% 13.4% 13.4% 13.4% 13.4% 
r = 0.33 9.5 – 11.0% 10.7% 10.4 – 11.6% 9.4 – 11.6% 10.4 – 12.0% 10.2 – 12.3% 10.9 – 13.2% 
r = 0.5  7.8 – 8.8% 7.2 – 8.2% 7.7 – 8.6% 6.2 – 8.6% 6.7 – 8.1% 6.4 – 8.3% 6.8 – 11.4% 
r = 1 6.0 – 6.9% 6.2 – 7.1% 6.0 – 6.8% 5.5 – 6.8% 5.1 – 6.5% 5.1 – 6.1% 4.8 – 9.6% 
r = 2 6.0 – 6.8% 6.0 – 6.6% 5.9 – 6.7% 5.2 – 6.4% 4.9 – 6.0% 4.8 – 5.7% 4.6 – 9.2% 
r = 4 5.9 – 6.7% 5.8 – 6.6% 5.8 – 6.5% 5.1 – 6.3% 5.0 – 5.9% 4.8 – 5.6% 4.6 – 9.0% 
r = 8 5.9 – 6.7% 5.9 – 6.6% 5.8 – 6.5% 5.1 – 6.2% 4.9 – 5.9% 4.8 – 5.6% 4.6 – 9.0% 
r = 16 5.9 – 6.6% 5.8 – 6.6% 5.8 – 6.5% 5.2 – 6.2% 5.0 – 5.9% 4.8 – 5.6% 4.6 – 6.8% 

Frequency of 
Susceptibility 

(r) 
Predicted Concordance in Non-twin Siblings (100% of Genes Recessive) 

r = 0.25 13.4% 13.4% 13.3 – 13.4% 13.4% 13.4% 13.4% 13.4% 
r = 0.33 9.2 – 10.8% 10.5% 10.1 – 11.4% 9.1 – 11.4% 10.5 – 11.8% 9.8 – 12.1% 10.5 – 13.1% 
r = 0.5  7.0 – 8.0% 6.3 – 7.4% 6.8 – 7.8% 5.1 – 7.5% 5.2 – 6.7% 4.9 – 6.8% 5.1 – 10.3% 
r = 1 4.2 – 5.0% 4.3 – 5.2% 4.1 – 4.9% 3.2 – 4.3% 2.6 – 3.7% 2.3 – 3.1% 1.9 – 6.2% 
r = 2 3.3 – 4.1% 3.3 – 3.9% 3.2 – 3.9% 2.1 – 2.9% 1.6 – 2.2% 1.3 – 1.7% 1.0 – 4.0% 
r = 4 2.7 – 3.3% 2.6 – 3.2% 2.5 – 3.0% 1.4 – 2.1% 1.0 – 1.5% 0.7 – 1.1% 0.5 – 2.7% 
r = 8 2.3 – 2.8% 2.2 – 2.7% 2.1 – 2.5% 1.1 – 1.6% 0.7 – 1.0% 0.5 – 0.7% 0.3 – 1.9% 
r = 16 2.0 – 2.5% 1.9 – 2.3% 1.8 – 2.2% 0.8 – 1.3% 0.5 – 0.8% 0.3 – 0.5% 0.2 – 0.6% 
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Table 8 (6a). Predicted concordance rates of MS in first degree relatives of MS probands assuming (Pt0 = Pt1), 20%  

Dominant genes and 80% Recessive genes. (Targets are colored in yellow; optimal solution colored in green) 

 Number of Susceptibility Genes Required (n) 
 5 10 11 12 13 14 15 

Frequency of 
Susceptibility 

(r) 
Predicted Concordance in Non-twin Siblings (Target = 2.9 – 3.8%) 

r = 0.25 12.6% 13.2% 13.2% 13.1% 13.1 – 13.4% 13.1 – 13.4% 13.0 – 13.4% 
r = 0.33 10.8% 10.1% 9.6 – 11.3% 9.1 – 10.9% 10.5% 10.1 – 11.5% 9.7 – 11.2% 
r = 0.5  8.1% 6.5 – 7.9% 7.1 – 8.3% 6.3 – 8.7% 6.8 – 8.0% 7.3 – 8.4% 6.6 – 7.8% 
r = 1 6.5 – 7.3% 5.4 – 6.6% 5.1 – 6.2% 5.2 – 6.3% 4.9 – 5.9% 5.0 – 6.0% 4.8 – 5.7% 
r = 2 5.2 – 6.7% 4.4 – 5.4% 4.5 – 5.2% 4.3 – 5.2% 4.0 – 4.9% 4.0 – 4.6% 3.9 – 4.7% 
r = 4 5.0 – 6.2% 3.9 – 4.8% 3.8 – 4.7% 3.7 – 4.5% 3.5 – 4.2% 3.4 – 4.1% 3.3 – 4.0% 
r = 8 4.6 – 5.9% 3.5 – 4.4% 3.5 – 4.3% 3.3 – 4.0% 3.1 – 3.8% 2.9 – 3.6% 2.9 – 3.5% 

r = 16 4.3 – 5.6% 3.3 – 4.1% 3.2 – 4.0% 3.0 – 3.7% 2.8 – 3.5% 2.6 – 3.3% 2.6 – 3.2% 

Frequency of 
Susceptibility 

(r) 
Predicted Concordance in Parents/Children (Target =  1.8 – 2.1%) 

r = 0.25 12.6% 13.2% 13.2% 13.1% 13.1 – 13.4% 13.1 – 13.4% 13.0 – 13.4% 
r = 0.33 10.7% 9.9% 9.4 – 11.2% 8.9 – 10.8% 10.4% 9.9 – 11.4% 9.5 – 11.0% 
r = 0.5  7.7% 5.9 – 7.3% 6.5 – 7.8% 5.7 – 8.2% 6.2 – 7.4% 6.6 – 7.8% 6.0 – 7.1% 
r = 1 5.6 – 6.4% 4.3 – 5.4% 3.9 – 5.0% 4.0 – 5.0% 3.6 – 4.5% 3.7 – 4.6% 3.4 – 4.3% 
r = 2 3.7 – 5.3% 2.8 – 3.7% 2.9 – 3.6% 2.6 – 3.4% 2.4 – 3.1% 2.3 – 2.8% 2.2 – 2.8% 
r = 4 3.3 – 4.5% 2.1 – 2.8% 2.0 – 2.7% 1.8 – 2.4% 1.6 – 2.1% 1.5 – 2.0% 1.4 – 1.9% 
r = 8 2.7 – 3.9% 1.6 – 2.2% 1.5 – 2.1% 1.3 – 1.8% 1.1 – 1.6% 1.0 – 1.4% 1.0 – 1.3% 

r = 16 2.3 – 3.5% 1.2 – 1.7% 1.2 – 1.7% 1.0 – 1.4% 0.8 – 1.2% 0.7 – 1.0% 0.7 – 0.9% 
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Table 9 (6b). Predicted concordance rates of MS in first degree relatives of MS probands assuming (Pt0 = Pt1), 20% 

Dominant genes and 80% Recessive genes. (Targets are colored in yellow) 

 Number of Susceptibility Genes Required (n) 
 16 17 18 30 40 50 60 

Frequency of 
Susceptibility 

(r) 
Predicted Concordance in Non-twin Siblings (Target = 2.9 – 3.8%) 

r = 0.25 13.4% 13.4% 13.3 – 13.4% 13.4% 13.4% 13.4% 13.4% 
r = 0.33 9.3 – 10.9% 10.5% 10.2 – 11.4% 9.9 – 11.0% 10.1 – 11.9% 9.9 – 12.1% 10.6 – 13.1% 
r = 0.5  7.1 – 8.2% 6.5 – 7.5% 6.9 – 7.9% 5.3 – 7.7% 5.6 – 7.0% 5.2 – 7.1% 5.5 – 10.5% 
r = 1 4.5 – 5.4% 4.6 – 5.5% 4.4 – 5.2% 3.5 – 4.7% 3.0 – 4.2% 2.8 – 3.6% 2.4 – 6.9% 
r = 2 3.8 – 4.5% 3.8 – 4.3% 3.6 – 4.3% 2.5 – 3.5% 2.0 – 2.7% 1.7 – 2.3% 1.4 – 4.9% 
r = 4 3.2 – 3.9% 3.1 – 3.7% 2.9 – 3.6% 1.9 – 2.7% 1.5 – 2.0% 1.2 – 1.6% 0.9 – 3.7% 
r = 8 2.8 – 3.5% 2.7 – 3.3% 2.6 – 3.1% 1.5 – 2.2% 1.1 – 1.6% 0.8 – 1.2% 0.6 – 2.9% 
r = 16 2.5 – 3.1% 2.4 – 2.9% 2.3 – 2.8% 1.3 – 1.9% 0.9 – 1.3% 0.6 – 0.9% 0.5 – 1.1% 

Frequency of 
Susceptibility 

(r) 
Predicted Concordance in Parents/Children (Target =  1.8 – 2.1%) 

r = 0.25 13.4% 13.4% 13.3 – 13.4% 13.4% 13.4% 13.4% 13.4% 
r = 0.33 9.1 – 10.7% 10.4% 10.0 – 11.3% 8.8 – 11.2% 9.3 – 11.3% 9.6 – 11.9% 10.3 – 13.0% 
r = 0.5  6.4 – 7.5% 5.8 – 6.8% 6.2 – 7.2% 4.4 – 6.7% 4.6 – 5.9% 4.1 – 5.9% 4.2 – 9.5% 
r = 1 3.2 – 4.0% 3.3 – 4.0% 3.0 – 3.7% 2.0 – 3.0% 1.5 – 2.3% 1.2 – 1.7% 0.9 – 4.1% 
r = 2 2.1 – 2.9% 2.0 – 2.4% 1.8 – 2.4% 0.9 – 1.4% 0.6 – 0.9% 0.4 – 0.6% 0.2 – 1.7% 
r = 4 1.4 – 1.8% 1.2 – 1.6% 1.1 – 1.5% 0.4 – 0.7% 0.2 – 0.4% 0.1 – 0.2% 0.1 – 0.7% 
r = 8 0.9 – 1.3% 0.8 – 1.1% 0.7 – 1.0% 0.2 – 0.4% 0.1 – 0.2% 0.0 – 0.1% 0.0 – 0.3% 
r = 16 0.7 – 0.9% 0.6 – 0.8% 0.5 – 0.7% 0.1 – 0.2% 0.0 – 0.1% 0.0% 0.0% 
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Table 10 (7a). Predicted concordance rates of MS in second and third degree relatives of MS probands assuming (Pt0 = Pt1), 

20% Dominant genes and 80% Recessive genes. (Targets are colored in yellow; optimal solution colored in green) 

 Number of Susceptibility Genes Required (n) 
 5 10 11 12 13 14 15 

Frequency of 
Susceptibility 

(r) 
Predicted Concordance in Second Degree Relatives (Target = 0.9 – 1.6%) 

r = 0.25 12.1% 13.0% 12.9% 12.8% 12.8 – 13.3% 12.7–13.3% 12.6 – 13.3% 
r = 0.33 9.2% 7.6% 6.8 – 9.1% 6.1 – 8.4% 7.8% 7.1 – 9.1% 6.5 – 8.5% 
r = 0.5  5.6% 3.2 – 4.4% 3.5 – 4.7% 2.8 – 5.0% 3.1 – 4.1% 3.4 – 4.4% 2.7 – 3.7% 
r = 1 3.7 – 4.5% 2.1 – 2.9% 1.8 – 2.5% 1.8 – 2.4% 1.5 – 2.1% 1.5 – 2.0% 1.3 – 1.8% 
r = 2 2.5 – 3.9% 1.4 – 2.0% 1.4 – 1.8% 1.2 – 1.7% 1.0 – 1.4% 0.9 – 1.2% 0.8 – 1.2% 
r = 4 2.4 – 3.5% 1.1 – 1.7% 1.0 – 1.5% 0.9 – 1.3% 0.8 – 1.1% 0.7 – 1.0% 0.6 – 0.9% 
r = 8 2.1 – 3.2% 1.0 – 1.4% 0.9 – 1.3% 0.7 – 1.1% 0.6 – 0.9% 0.5 – 0.8% 0.5 – 0.7% 

r = 16 1.9 – 3.0% 0.9 – 1.3% 0.8 – 1.1% 0.6 – 0.9% 0.5 – 0.8% 0.5 – 0.7% 0.4 – 0.6% 

Frequency of 
Susceptibility 

(r) 
Predicted Concordance in Third Degree Relatives (Target = 0.9%) 

r = 0.25 11.8% 12.9% 12.8% 12.7% 12.5 – 13.3% 12.4 – 13.2% 12.3 – 13.2% 
r = 0.33 8.3% 6.3% 5.5 – 7.9% 4.8 – 7.1% 6.4% 5.7 – 7.8% 5.0 – 7.1% 
r = 0.5  4.4% 2.0 – 3.0% 2.3 – 3.3% 1.7 – 3.4% 1.9 – 2.7% 2.1 – 2.9% 1.6 – 2.2% 
r = 1 2.7 – 3.3% 1.1 – 1.7% 0.9 – 1.4% 0.9 – 1.3% 0.7 – 1.1% 0.7 – 1.0% 0.5 – 0.8% 
r = 2 1.7 – 2.8% 0.7 – 1.1% 0.6 – 0.9% 0.5 – 0.8% 0.4 – 0.7% 0.4 – 0.5% 0.3 – 0.5% 
r = 4 1.6 – 2.5% 0.5 – 0.9% 0.5 – 0.7% 0.4 – 0.6% 0.3 – 0.5% 0.3 – 0.4% 0.2 – 0.3% 
r = 8 1.4 – 2.4% 0.5 – 0.8% 0.4 – 0.6% 0.3 – 0.5% 0.3 – 0.4% 0.2 – 0.3% 0.2 – 0.3% 

r = 16 1.3 – 2.2% 0.4 – 0.7% 0.3 – 0.5% 0.3 – 0.5% 0.2 – 0.4% 0.2 – 0.3% 0.1 – 0.2% 
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Table 11 (7b). Predicted concordance rates of MS in second and third degree relatives of MS probands assuming  

(Pt0 = Pt1),  20% Dominant genes and 80% Recessive genes. (Targets are colored in yellow) 

 Number of Susceptibility Genes Required (n) 
 16 17 18 30 40 50 60 

Frequency of 
Susceptibility 

(r) 
Predicted Concordance in Second Degree Relatives (Target = 0.9 – 1.6%) 

r = 0.25 13.3% 13.2% 13.2 – 13.4% 13.2 – 13.4% 13.3 – 13.4% 13.4% 13.4% 
r = 0.33 5.9 – 8.0% 7.4% 6.8 – 8.6% 4.6 – 7.6% 5.0 – 7.7% 4.3 – 7.8% 4.6 – 10.5% 
r = 0.5  3.0 – 3.9% 2.4 – 3.3% 2.7 – 3.5% 1.1 – 2.3% 0.9 – 1.4% 0.5 – 1.1% 0.4 – 3.0% 
r = 1 1.1 – 1.5% 1.1 – 1.5% 0.9 – 1.3% 0.3 – 0.6% 0.1 – 0.3% 0.1% 0.0 – 0.1% 
r = 2 0.7 – 1.0% 0.7 – 0.9% 0.6 – 0.8% 0.1 – 0.3% 0.1% 0.0% 0.0% 
r = 4 0.5 – 0.8% 0.5 – 0.7% 0.4 – 0.6% 0.1 – 0.2% 0.0 – 0.1% 0.0% 0.0% 
r = 8 0.4 – 0.6% 0.4 – 0.5% 0.3 – 0.5% 0.1% 0.0% 0.0% 0.0% 
r = 16 0.4 – 0.5% 0.3 – 0.5% 0.3 – 0.4% 0.0 – 0.1% 0.0% 0.0% 0.0% 

Frequency of 
Susceptibility 

(r) 
Predicted Concordance in Third Degree Relatives (Target = 0.9%) 

r = 0.25 13.2% 13.1% 13.1 – 13.4% 13.1 – 13.4% 13.2 – 13.4% 13.4% 13.4% 
r = 0.33 4.5 – 6.4% 5.8% 5.2 – 7.1% 2.9 – 5.6% 3.1 – 5.4% 2.2 – 5.2% 2.4 – 8.0% 
r = 0.5  1.7 – 2.4% 1.3 – 1.9% 1.4 – 2.0% 0.4 – 1.0% 0.2 – 0.4% 0.1 – 0.2% 0.1 – 1.0% 
r = 1 0.4 – 0.7% 0.4 – 0.6% 0.3 – 0.5% 0.1% 0.0% 0.0% 0.0% 
r = 2 0.3 – 0.4% 0.2 – 0.3% 0.2 – 0.3% 0.0 – 0.1% 0.0% 0.0% 0.0% 
r = 4 0.2 – 0.3% 0.1 – 0.2% 0.1 – 0.2% 0.0% 0.0% 0.0% 0.0% 
r = 8 0.1 – 0.2% 0.1 – 0.2% 0.1 – 0.2% 0.0% 0.0% 0.0% 0.0% 
r = 16 0.1 – 0.2% 0.1 – 0.2% 0.1% 0.0% 0.0% 0.0% 0.0% 
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Table 12 (8). Observed and the optimal predicted concordance rates and prevalence rates for MS under different 

conditions. 

 Observed 

(Estimated)* 

100% 

Recessive 

80%  

Recessive 

100%  

Dominant 

100%  

Mixed 

Number Genes Needed (n) - 14 13 58 58 

Frequency of Susceptibility (r) - 2 4 2 2 

Total Non-HLA Genes (x) - 58 – 61 100 – 107 246-254 246 - 254 

Relationship  

Prevalence (2, 19) 0.1 – 0.2%          (1.5) 0.14 – 0.21% 0.12 – 0.21% 0.00% 0.00% 

Non-twin Sibling (5, 6) 2.9 – 3.8%          (3.0) 3.7 – 4.3% 3.3 – 4.1%. 4.6 – 5.4% 4.5 – 5.3% 

Offspring, Conjugal MS**  ~10%                (10.0) 11.9 – 12.1% 10.3 – 10.8% 13.4% 13.2 – 13.3% 

Parent/Child (5) 1.8 – 2.1%          (2.0) 1.8 – 2.3% 1.3 – 1.8% 4.6 – 5.4% 4.3 – 5.1% 

Second Degree (5) 0.9 – 1.6%          (1.0) 0.8 – 1.1% 0.7 – 1.1% 0.1% 0.1% 

Third Degree (5) 0.9%                   (0.9) 0.3 – 0.5% 0.3 – 0.5% 0.00% 0.00% 

Closeness of Fit - 1.8 1.7 22.7 20.6 
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*   The estimates (Targets) used to calculate closeness of fit are shown in parentheses. Closeness of fit was measured as 

the sum of the squared percent deviations of both the high and the low prediction from the Target. The optimal 

estimate was taken as the estimate at the values of x, n, and r that gave the closest fit to the observations. 

** The concordance rate for the offspring of Conjugal MS is based on the report of Sadovnick et al. (6), in which the 

recurrence rate in offspring of two parents with MS is reported to be 78% of the monozygotic twin rate (CRMZ). 
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Table 13 (9). “Closeness of Fit” Calculations.*  (Targets are colored in yellow; optimal fit colored in green) 

Number of Susceptibility Genes Required (n)  
5 10 11 12 13 14 15 

Frequency of 
Susceptibility 

(r) 
Closeness of Fit (Target  ≤ 4.0) 

r = 0.25 24,106 29,422 28,838 28,228 29,694 29,258 28,805 
r = 0.33 19,148 4,872 5,600 4,166 4,788 5,416 4,150 
r = 0.5  2,139 459 555 451 320 378 189 
r = 1 789 90 43.9 39.7 18.9 17.7 9.4 
r = 2 394 21.4 12.1 6.9 3.3 2.4 2.5 
r = 4 337 9.9 4.4 2.2 1.7 2.1 3.0 
r = 8 286 6.8 3.1 1.9 2.3 3.4 4.4 

r = 16 262 5.8 2.8 2.4 3.3 4.6 5.8 

 Number of Susceptibility Genes Required (n) 

 16 17 18 30 40 50 60 

Frequency of 
Susceptibility 

(r) 
Closeness of Fit (Target  ≤  4.0) 

r = 0.25 31,198 30,935 31,545 31,749 32,041 32,713 32,776 
r = 0.33 3,137 3,593 4,106 1,459 1,280 885 2,042  
r = 0.5  228 114 140 21.4 18.3 18.7 38.0 
r = 1 5.9 6.2 4.7 8.5 10.6 11.8 11.6 
r = 2 3.0 3.6 4.2 10.9 13.5 14.9 12.7 
r = 4 4.0 5.1 6.3 13.2 15.5 16.8 14.9 
r = 8 5.5 6.8 8.0 14.7 16.7 17.7 16.2 
r = 16 6.8 8.1 9.4 15.6 17.3 18.2 18.3 
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* Calculated as the sum of the squared percent deviations from published epidemiological observations (E) of the high 

(H) and low (L) estimates derived from the model for non-twin siblings, parents/children, offspring of conjugal MS 

couples, and second and third degree relatives of MS probands. For each category, this squared percent deviation is 

defined as: 

       [(H - E)/E   +  (L - E)/E]2
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Table 14 (10). The Estimated Prevalence and the Number of Loci (n) for susceptible genotypes that include the HLA 

DRB1*1501 allele. (Yellow and green colors as designated for “Closeness of Fit” calculations in Table 8) 
 

 Estimated Number of Susceptibility Genes Required  (n) for all Loci 
 11 12 13 14 15 16 17 

Frequency of 
Susceptibility 

(r) 
Estimated Prevalence HLA DRB1*1501 in an MS Population (unadjusted; OR ≈ 2.21) 

r = 0.25 0.25 0.26  0.24 – 0.26 0.24 – 0.26 0.24 – 0.26 0.25 0.25 
r = 0.33 0.32 – 0.37 0.33 – 0.39 0.35 0.32 – 0.36 0.33 – 0.37 0.34 – 0.38 0.34 
r = 0.5  0.39 – 0.42 0.38 – 0.44 0.39 – 0.42 0.39 – 0.41 0.39 – 0.42 0.38 – 0.41 0.40 – 0.42 
r = 1 0.42 – 0.44 0.41 – 0.43 0.41 – 0.44 0.41 – 0.43 0.41 – 0.43 0.42 – 0.44 0.41 – 0.43 
r = 2 0.42 – 0.44 0.41 – 0.44 0.41 – 0.44 0.42 – 0.43 0.41 – 0.43 0.42 – 0.43 0.42 – 0.43 
r = 4 0.42 – 0.44 0.42 – 0.44 0.42 – 0.44 0.41 – 0.43 0.42 – 0.43 0.42 – 0.43 0.42 – 0.43 
r = 8 0.42 – 0.44 0.42 – 0.44 0.41 – 0.43 0.42 – 0.43 0.42 – 0.43 0.41 – 0.43 0.42 – 0.43 
r = 16 0.42 – 0.44 0.42 – 0.44 0.42 – 0.43 0.42 – 0.43 0.42 – 0.43 0.42 – 0.43 0.41 – 0.43 

Frequency of 
Susceptibility 

(r) 
Odd Ratios for Recessive non-HLA DRB1 Loci  (after adjustment of HLA to OR = 3.34) 

r = 0.25 1.21 1.23 1.05 – 1.23 1.05 – 1.27 1.07 – 1.29 1.07 1.08 
r = 0.33 1.57 – 2.03 1.66 – 2.15 1.66 – 2.15 1.51 – 1.82 1.57 – 1.91 1.64 – 2.00 1.70 
r = 0.5  1.88 – 2.15 1.79 – 2.30 1.79 – 2.30 1.82 – 2.01 1.91 – 2.12 1.84 – 2.01 1.92 – 2.11 
r = 1 1.86 – 2.05  1.82 – 1.98 1.82 – 1.98 1.82 – 1.96 1.85 – 1.98 1.88 – 2.01 1.84 – 1.96 
r = 2 1.75 – 1.85 1.73 – 1.85 1.73 – 1.85 1.75 – 1.83 1.74 – 1.84 1.74 – 1.84 1.75 – 1.82 
r = 4 1.65 – 1.78 1.66 – 1.75 1.66 – 1.75 1.65 – 1.74 1.66 – 1.74 1.66 – 1.74 1.66 – 1.73 
r = 8 1.60 – 1.69 1.60 – 1.69 1.60 – 1.69 1.60 – 1.67 1.60 – 1.67 1.60 – 1.67 1.61 – 1.66 
r = 16 1.56 – 1.64 1.56 – 1.64 1.56 – 1.64 1.56 – 1.63 1.56 – 1.62 1.57 – 1.62 1.56 – 1.62 
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Table 15 (11). The estimated Number of Loci (n) in for Genotypes including or not including HLA DRB1*1501.  

(Yellow and green colors as designated for “Closeness of Fit” calculations in Table 8) 

 

 
 

 

 Estimated Number of Susceptibility Genes Required  (n) for all Loci 
 11 12 13 14 15 16 17 

Frequency of 
Susceptibility 

(r) 
Estimated (n) the for Genotypes including HLA DRB1*1501 

r = 0.25 3 3 3 3 3 3 3 
r = 0.33 3 – 10 3 – 11 11 – 11 3 – 13 11 – 14 14 – 15 15 
r = 0.5  10 – 11 11 – 12 12 – 13 13 – 14 14 – 15 15 – 16 17 
r = 1 11 12 13 14 15 16 17 
r = 2 11 12 13 14 15 16 17 
r = 4 11 12 13 14 15 16 17 
r = 8 11 12 13 14 15 16 17 
r = 16 11 12 13 14 15 16 17 

Frequency of 
Susceptibility 

(r) 
Estimated (n) the for Genotypes not including HLA DRB1*1501 

r = 0.25 12 13 14 – 15 15 – 16 16 – 17 18 19 
r = 0.33 11 – 12 12 – 13 14 15 15 – 16 16 – 17 18 
r = 0.5  11 12 13 14 15 16 17 
r = 1 11 12 13 14 15 16 17 
14 – 15r = 2 11 12 13 14 15 16 17 
r = 4 11 12 13 14 15 16 17 
r = 8 11 12 13 14 15 16 17 
r = 16 11 12 13 14 15 16 17 
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