Additional file 1

Estimation of AUC

For each cycle, AUC was calculated. Concentration of doxorubicin was estimated in plasma immediately after infusion of PLD (c_{0}), prior to onset of apheresis ($\mathrm{c}_{\text {aphstart }}$) and after termination of apheresis ($\mathrm{c}_{\text {aphend }}$). Elimination of Caelyx was assumed first order and monophasic ${ }^{2}$ (equ. 3).
$c(t)=c_{0} \cdot \exp \left(-\frac{1}{k} t\right)$
With

$$
\begin{equation*}
k=\frac{t_{1 / 2}}{0.693} \tag{4}
\end{equation*}
$$

The constant k was estimated by regression analysis using the measured doxorubicin concentrations c_{0} and $\mathrm{c}_{\text {aphstart. }}$ Regression was done iterative by slide write curve fitting function (Slide Write 6.0, Advanced graphics software Inc., California, USA).

To calculate the AUC, the respective integrals of equ. 3 were used. To calculate AUC without apheresis $\left(\mathrm{AUC}_{\text {normal }}\right)$, the integral between $\mathrm{t}=0$ and $\mathrm{t}=504$ (3 weeks $=21$ days $=504 \mathrm{~h}$) was estimated.

$$
\begin{equation*}
A U C_{\text {normal }}=\int_{0}^{504} c_{0} \cdot-k \cdot \exp \left(-\frac{1}{k} t\right) \tag{5}
\end{equation*}
$$

For calculating of the AUC with apheresis ($\left.\mathrm{AUC}_{\mathrm{A}}\right)$, the AUC of three distinct phases were summarized:

$$
\begin{equation*}
A U C_{\text {apher }}=A U C_{\text {apher } 1}+A U C_{\text {apher } 2}+A U C_{\text {apher } 3} \tag{6}
\end{equation*}
$$

$\mathrm{AUC}_{\text {apher1 }}$ corresponds to the AUC until the onset of apheresis, $\mathrm{AUC}_{\text {apher2 }}$ corresponds to the AUC during the time of apheresis, and $\mathrm{AUC}_{\text {apher3 }}$ describes the AUC from termination of apheresis until end of cycle.

With $t_{\text {aphstart }}$ being the time in hours until apheresis was initiated, AUC $_{\text {apher1 }}$ was calculated in the same way as $\mathrm{AUC}_{\text {normal }}$:

$$
\begin{equation*}
A U C_{\text {apher } 1}=\int_{0}^{t_{\text {qphagart }}} c_{0} \cdot-k \cdot \exp \left(-\frac{1}{k} t\right) \tag{7}
\end{equation*}
$$

With $\mathrm{c}_{\text {aphstart }}$ being the plasma concentration of doxorubicin at apheresis onset, $\mathrm{c}_{\text {aphend }}$ being the respective concentration when apheresis was terminated, and $t_{\text {apher }}$ being the duration of apheresis ($\sim 3-4$ h), AUC Phase2 was calculated:

$$
\begin{equation*}
A U C_{\text {apher } 2}=\left(c_{\text {aphstart }}-c_{\text {aphend }}\right) \cdot t_{\text {apher }} \tag{8}
\end{equation*}
$$

When apheresis was terminated, elimination was assumed to proceed normal, and $\mathrm{AUC}_{\text {apher3 }}$ was calculated from $\mathrm{t}=\mathrm{t}_{\text {aphend }}$ until the end of cycle $(\mathrm{t}=504 \mathrm{~h})$ using $\mathrm{C}_{\text {aphend }}$ and k .

$$
\begin{equation*}
A U C_{\text {Phase3 }}=\int_{t_{\text {oppene }}}^{504} c_{\text {aphend }} \cdot-k \cdot \exp \left(-\frac{1}{k} t\right) \tag{9}
\end{equation*}
$$

The differences in AUC were calculated as:
$\Delta A U C=\left(1-\frac{A U C_{\text {Apher }}}{A U C_{0}}\right) \cdot 100[\%]$

