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I. Gene signatures overview 

We investigated nine gene signatures that have received the greatest clinical interest 
and been validated in multiple studies or datasets.  
 
The subtype signature is used to classify breast tumors into five biological subgroups: 
luminal A, luminal B, HER2-enriched, basal-like, and normal-like. The original 
intrinsic classification was obtained through unsupervised clustering of 496 genes 
showing small intra-tumor variation and large inter-tumor variation (before and after 
neoadjuvant chemotherapy).1 A couple of variants using different gene sets have 
emerged in subsequent publications2-5 to define breast cancer subtypes. In this study, 
we evaluated the Intrinsic signature1-3, 6 and PAM50.7 Even though PAM50 is the 
most recent variant, there is at present no consensus on molecular taxonomy.8  
 
The 70-gene profile or MammaPrint®  (Agendia, Amsterdam, The Netherlands)9-13 
predicts metastasis free survival over a five-year period. It was validated subsequently 
in the NKI295 cohort consisting of both node negative and node positive patients10, 
on another cohort of 241 breast cancer patients with 1–3 positive lymph nodes11 and 
in the TRANSBIG consortium.12 In addition, the results obtained with the 70-gene 
expression profile were shown to be reproducible with quantitative reverse-
transcriptase polymerase chain reaction (qRT-PCR).13  
 
The 76-gene signature (Veridex)14-16 is designed to predict distant metastasis within 5 
years for lymph-node-negative breast cancer patients. It was originaly developed 
based on 286 lymph-node-negative breast cancer patients 14 and later validated in an 
independent multicentric population of 180 untreated node-negative breast cancer 
patients 15 and another gene expression study  of 198 node-negative breast cancer 
patients 16 from the same Affymetrix U133a platform used in the original study.14  
 
The genomic grade index (GGI) 17, 18 has been designed to reclassify patients with 
histologic grade 2 tumors into two groups with distinct clinical outcomes similar to 
those of histologic grade 1 and 3, respectively.  
 
The wound response (WR) or core serum response (CSR) gene signature19, 20 was 
derived from the transcriptional response of normal fibroblasts to serum in cell 
culture. It classifies tumors into two classes (Activated vs. Quiescent) by comparing 
the averaged fibroblast serum-induced expression pattern of the CSR genes.  
 
The epithelial hypoxia signature consists of a set of genes for which the expression 
was consistently induced by hypoxia in cultured epithelial cells (HMECs and 
RPTECs)21. A “hypoxia score” 22 was used to classify tumors as hypoxic or non-
hypoxic. 
 
We included Oncotype DX® (Genomic Health Inc., Redwood City, CA) 23 in our 
study. The 21-gene recurrence-score signature was developed from qRT-PCR assay to 
quantify the likelihood of distant recurrence at 10 years in adjuvant-tamoxifen-treated 
(ER-positive) patients in both node-negative 23 and node-positive disease 24.  
 



 3 

Lastly, we also included EndoPredict 25, which is a recent introduced qRT-PCR based 
test for predicting the likelihood of distant recurrence in patients with ER-positive, 
HER2-negative breast cancer treated with adjuvant endocrine therapy only. 	  
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II. Supplementary Methods 

i. Data 

The datasets are accessible from NCBI's Gene Expression Omnibus (GEO, 
http://www.ncbi.nlm.nih.gov/geo/) with the following identifiers; GSE6532 for the 
Loi et al. dataset18, GSE3494 for Miller dataset26, GSE1456 for the Pawitan et al. 
dataset27, GSE7390 for the Desmedt et al. dataset16 and GSE2603 for the Minn et al. 
datset28. The Chin et al.29 dataset is available from ArrayExpress 
(http://www.ebi.ac.uk/arrayexpress/experiments/E-TABM-158). All overlapping 
samples from the Desmedt and Loi datasets were excluded. 
 
This pooled dataset (n = 947) was preprocessed and normalized as described 
previously30. Briefly, microarray quality-control assessment was carried out using the 
Bioconductor package AffyPLM31. The Relative Log Expression (RLE) test and the 
Normalized Unscaled Standard Errors (NUSE) test were applied. Chip pseudo-images 
were produced to assess artifacts on arrays that did not pass the preceding quality 
control tests. Selected arrays were normalized according to a three step procedure 
using the RMA expression measure algorithm (http://www.bioconductor.org32): RMA 
background correction convolution, median centering of each gene across arrays 
separately for each data set and quantile normalization of all arrays. The merged 
dataset did not show batch effect (Figure 1).  
 
For samples that the IHC (Immunohistochemistry) ER status were unavailable, the 
ER status was determined by the expression level of the ER probe “205225_at”: ER 
negative when 205225_at ≤ -1.84 and ER positive when 205225_at > -1.84. The 
threshold was selected by ROC curve using the IHC assignments as true labels as 
previously described30. Similarly, for tumors without IHC HER2 status, their HER2 
status was determined by expression level of ERBB2 probe “216836_S_at” 30.  
 
The clinical data with updated follow-ups (March 2011 version on Distant Metastasis 
Free Survival, Relapse Free Survival and Disease Specific Survival) for Miller set26 is 
downloadable from https://array.nci.nih.gov/caarray/project/mille-00271 (accessed on 
May 9, 2012). The treatment data for Pawitan dataset27  was obtained from the author 
of the original study.  
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Figure 1. Batch effect examination for the Affy947 data merged from six published breast cancer 
expression sets. 
 
 
 

ii. Gene annotation mapping 

For gene signatures that were indexed by Affymetrix U133a probes, the original 
Affymetix probes in the gene signature were mapped directly to the expression set in 
the study. For gene signatures with identities other than affymetrix probes, the 
annotation mapping was carried out using proper identity linker(s).  
 
In the case when multiple hits (Affy IDs in the studied dataset) for a target gene (in 
the signature) were found, we selected probe(s) with maximum interquartile range 
(IQR: difference between the third and first quartiles). If there were still more than 
one hit per target gene, we further averaged the expression values of those probes for 
each sample. The same aggregating procedure for multiple hits of a target gene was 
used when mapping all the gene signatures.  
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Annotation for Affy947 expression set 

The gene annotations for the Affymetrix U133a probes in the studied expression set 
were retrieved from BioMart (http://www.ebi.ac.uk/biomart) through Bioconductor33 
implementation biomaRt34 (Ensembl release 54/NCBI36 (hg18) human assembly).  

Intrinsic gene signature 

The intrinsic signature1-3 was developed on Stanford cDNA two-color array. The 
centroids were indexed by 549 unique clone IDs. Annotations for Stanford 43k cDNA 
array were retrieved from SMD SOURCE (http://smd.stanford.edu/cgi-
bin/source/sourceSearch) under UniGene Build Number 222. The probe identifiers 
were mapped to the cDNA clones using the following linkers: entrez gene ID, refseq 
and UniGene cluster ID.  We reported all matched probe ID(s) for individual clone ID 
obtained by each of the linkers. And for matched probes shared the same clone ID, we 
carried out the aggregating procedure described above: selected probe(s) with 
maximum IQR, and If there were still more than one hit per clone ID, we further 
averaged the expression values of those probes for each sample. 
 
Cross-platform mapping coverage: 410/549≈75% 

PAM50 

The PAM50 gene signature7 was developed from Agilent human 1Av2 microarrays or 
custom-designed Agilent human 22k arrays. The reported centroids were indexed by 
50 unique gene symbols. The Affymetrix U133A probes in the expression set were 
mapped to the gene identifications in the signature by gene symbols. And for matched 
probes shared the same gene symbol identifications, the aggregating procedure 
described above was carried out.  
 
Cross-platform mapping coverage: 42/50≈84% 

70-gene signature 

The 70-gene signature was developed from the Rossetta Agilent Hu 25k platform. 
The centroid was downloaded from the publication site9 
(www.rii.com/download/nejm_table3.zip) on Feb. 5, 2010*. The centroid was indexed 
by the original probe sequence IDs from the Agilent Hu25k array. The associated 
GenBank accession numbers for ESTs or contigs was retrieved from 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
* www.rii.com has been deprecated. See http://bioinformatics.nki.nl/data/nejm_table3.zip. Accessed on 

March 16, 2012. 
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http://www.rii.com/publications/2002/vantveer.html on Feb. 5, 2010†. The associated 
EnsEMBL transcripts retrieved from GenSigDB 35 were obtained by using a BLAST 
sequence similarity search, filtering the results for at least 95% similarity and at least 
50% of the target sequence covered by the match to an EnsEMBL transcript.  
 
The Affymetrix probe identifiers were mapped to the reported Agilent probe sequence 
IDs using the following linkers: EnsEMBL and GenBank IDs.  We reported all 
matched probe ID(s) for individual Sequence ID in the signature obtained by each of 
the linkers. And for matched probes shared the same sequence ID, the aggregating 
procedure described above was carried out. 
 
Among the total reported 70 sequence IDs in the 70-gene signature, 46 mapped to the 
Affy probes (65.7%).  

Wound response gene signature 

The activated-fibroblast-centroid was downloaded from the publication website 
(http://microarray-pubs.stanford.edu/wound_NKI/Centroids.xls). And the CSR genes 
in the centroid were mapped back to the original clones on Stanford cDNA array 
using annotation in Chang et al study20 (http://microarray-
pubs.stanford.edu/wound/Data/CSR_genes.xls). The centroid was therefore indexed 
by the original image clones. Since both studies used annotation with the same 
genome build (UniGene build 158), the accuracy of the mapped centroid was ensured.   
 
Annotations for Stanford 43k cDNA array were retrieved from SMD SOURCE 
(http://smd.stanford.edu/cgi-bin/source/sourceSearch) under UniGene Build Number 
222. The Affymetrix probe identifiers of the expression set were mapped to the cDNA 
clones using the following linkers: entrez gene ID, refseq and UniGene cluster ID.  
We reported all matched probe ID(s) for individual clone ID obtained by each of the 
linkers. And for matched probes shared the same clone ID, we selected probe(s) with 
maximum interquartile range (IQR: difference between the third and first quartiles). If 
there were still more than one hit per clone ID, the aggregating procedure described 
above was carried out. 
 
Among the total reported 380 clones in the CSR signature, 298 mapped to the Affy 
probes (78.4%).  

Hypoxia signature 

The hypoxia signature21 was developed on Stanford cDNA two-color platform. The 
signature was indexed by 253 unique clone IDs. Annotations for Stanford 43k cDNA 
array were retrieved from SMD SOURCE (http://smd.stanford.edu/cgi-
bin/source/sourceSearch) under UniGene Build Number 222. 
 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
† www.rii.com has been deprecated. See http://bioinformatics.nki.nl/data/van-t-Veer_Nature_2002/. 

Accessed on March 16, 2012. 
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The Affymetrix probe identifiers were mapped to the cDNA clones using the 
following linkers: entrez gene ID, refseq and UniGene cluster ID.  We reported all 
matched probe ID(s) for individual clone ID obtained by each of the linkers. And for 
matched probes shared the same clone ID, we selected probe(s) with maximum 
interquartile range (IQR: difference between the third and first quartiles). If there 
were still more than one hit per clone ID, the aggregating procedure described above 
was carried out. 
 
Among the total reported 253 clones in the hypoxia signature, 117 mapped to the Affy 
probes (46.2%). Considering these mapped clones represented 116 unique Unigene 
clusters (under UniGene Build Number 222), we believed that there was a fairly good 
coverage for this signature on the studied data compared to the original reported size 
21 (168 Unigenes).  
 

76-gene signature 

The data from the same platform as the signature, the array probe IDs were used to 
the map the signature to the dataset.  Among the total reported 60 ER+ markers and 
16 ER- markers in the 76-gene signature, all markers mapped to the studied data 
(100%).  

Genomic Grade Index (GGI) 

For data from the same platform as the signature, the array probe IDs were used to the 
map the signature to the new dataset.  Among the total reported 16 histologic grade 1 
markers and 112 histologic grade 3 markers in the GGI signature, all markers mapped 
to the studied dataset (100%).  

Oncotype DX (21-gene Genomic Health signature) 

As symbols in the signature were reported, gene symbol was used as linker for the 
mapping genes in the signature on the Affymetrix expression set. All markers mapped 
to the studied data (100%).  
 

EndoPredict (EP signature) 

As symbols in the signature were reported, gene symbol was used as linker for the 
mapping genes in the signature on the Affymetrix expression set. All markers mapped 
to the studied data (100%).  
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iii. Gene signatures & the associated classifers 

Intrinsic gene signature & PAM50  

Molecular subtype assignment 
 
The molecular subtype signatures are carried out under a population-based 
assumption that is the position of a single sample in an appropriately large and 
heterogeneous dataset must be determined to be able to make an acute classification. 
We previously discussed that gene centering is an essential step in molecular subtype 
classifications by the existing subtype signatures8. In addition to that it effectively 
removes the technical differences between a new dataset and the original training 
data, it is a fundamental step to remove the differences in the general expression level 
of different genes and help a sample to be correctly assigned to a subtype in a 
heterogeneous dataset. The title SSP (“single sample predictor”) on the later variants 
4, 7 does not bypass the population-based characteristic of the subtype signatures. 
 
Gene	  median	  centering	  was	  performed	  on	  the	  expression	  set,	  where	  the	  median	  
of	  the	  expression	  values	  for	  a	  specific	  gene	  across	  all	  samples	  was	  subtracted	  
from	  that	  gene.	  Tumors	  were	  assigned	  to	  a	  subtype	  using	  Pearson	  correlation	  to	  
the	  expression	  centroids.	  The	  subtype	  call	  corresponded	  to	  the	  label	  of	  the	  
centroid	  with	  the	  highest	  correlation.	  	  No	  threshold	  was	  set	  on	  the	  correlation	  
when	  performing	  subtyping.	  Every	  tumor	  sample	  had	  a	  subtype	  call.	   
 
ROR score for subtype signatures 
 
We computed the Risk-Of-Relapse (ROR) scores for tumors with both node-negative 
and node-positive by the Relapse risk Prediction Models described in Parker et al 
2009 7 for both subtype signatures. Originally, the risk prediction models used clinical 
parameters and PAM50 molecular subtypes to predict relapse for individuals. In our 
analysis, we applied the ROR models on the PAM50 classifications and Sørlie 
intrinsic signature classifications. Performances using different subtype signatures 
were compared. Briefly, a ROR score was assigned to each test case using correlation 
to the subtype alone (ROR-S) or using subtype correlation along with tumor size 
(ROR-C): 
 
ROR-S = 0.05 • basal + 0.12 • HER2 -0.34 • LumA + 0.23 • LumB 
ROR-C = 0.05 • basal + 0.11 • HER2 -0.23 • LumA + 0.09 • LumB  + 0.17 • T 
 
To classify samples into specific risk groups, the thresholds were chosen from the 
training set in Parker et al study 7 that required no LumA sample to be in the high-risk 
group and no basal-like sample to be in the low-risk group. Thresholds remained 
unchanged when evaluating samples in this study. For ROR-S model, a sample was 
assigned to low risk group with a score less than -0.15; to high risk group with a score 
larger than 0.1; to median risk otherwise. For ROR-C model, a sample was assigned 
to low risk group with a score less than -0.1; to high risk group with a score larger 
than 0.2; to median risk otherwise. 
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This model was trained with a multivariable Cox model using Ridge regression fit to 
the node-negative, untreated subset of the van de Vijver cohort 10.  The risk models 
were later validated on the node positive data 36.  
 
Measurement for agreement on subtype assignment between subtype 
signatures 
 
We used Pearson correlation to measure the agreement between the two gene 
signatures on risk assessments by ROR-S model. Cohen's kappa coefficient κ 37 was 
used to measure the agreement for the subtype assignments: 

  
κ  = 

p − p
e

1 − p
e

 

where p is the proportion of units where there is agreement, and pe is the proportion of 
units which would be expected to agree by chance. It is a form of intra-class 
correlation coefficient, but only values between 0 and 1 have useful meaning. A value 
of 1 implies perfect agreement and 0 implies no relationship.  
 
Measurement for stability of a subtype assignment 
 
The stability of the assignment for a specific subtype across signatures was measured 
by a Pearson correlation coefficient between the corresponding centroid correlations 
of all samples from each of signatures.   
 
Measurement for discriminate ability of a subtype assignment 
 
We defined a distance measurement D (as Delta) per sample to gauge the 
discriminant ability for individual subtypes. D per sample measured the distance 
between the strongest centroid correlation ρ(1) and the 2nd strongest correlation ρ(2) 
computed from a certain subtype signature g:  

  
Dg = ρ

(1)
g − ρ

(2)
g

 
The larger the D, the more distinguishable the assigned subtype is compared to the 
other subtypes. Distance measurement for intrinsic signature on sample j was 
therefore:  

Dj 
intrinsic = ρj(1)

 intrinsic - ρj(2)
 intrinsic 

where ρ j(1)
 intrinsic and ρj(2)

 intrinsic denoted as the highest and the second highest centroid 
correlations, respectively, in subtyping for sample j by intrinsic signature.  
 
D was used in the comparison across different signatures. When the subtype calls 
were consistent on the same sample between intrinsic and PAM50, the distance 
measurement for PAM50 on sample j carried out similarly:  

  
D j

PAM50 = ρ j(1)
PAM50 − ρ j(2)

PAM50

 However, in the case of inconsistent subtype calls on the same sample, the distance 
between the intrinsic signature and PAM50 on this sample was measured by the 
difference of the PAM50 centroid correlations between the intrinsic call (notated as 
C) and the PAM50 call:  

  
D j

PAM50 = ρ j(C )
PAM50 − ρ j(1)

PAM50       
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where ρ j(1)
 PAM50 and ρ j(2)

 PAM50 were the highest and the second highest centroid 
correlations, respectively, in PAM50  subtyping for sample j; while ρ j(C)

 PAM50 was the 
PAM50 centroid correlation of the call  by intrinsic signature for sample j. A positive 
D score indicates consistent calling for a particular sample by the two signatures and 
the magnitude reflects the distinguish ability of the subtype assignment. A negative D 
indicates discrepant subtype callings on the same sample; the larger the absolute 
value, the more different of the two subtype assignments. 
 
Measurement for agreement on subtype assignment and receptor IHC 
status  
 
For Intrinsic signature (Figure 2), among 709 IHC ER-positive samples, there were 
442 (62%) samples were assigned to Luminal subtypes; 22 out of 28 IHC triple-
negative samples (79 %) were assigned to Basal-like subtype and 11 out of 20 IHC 
HER2-positive samples (55%) were assigned to HER2-enriched subtype.  
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Figure 2. Overlap between molecular subtypes and receptor IHC status for Intrinsic signature 
subtype assignment. (Panel 1): PCA projection based on expression of all probes. Molecular subtypes 
were color-coded. (Panel 2): Luminal subtypes (solid color dots) overlap with IHC ER-positive 
samples (black circles). (Panel 3): Basal-like subtype (solid color dots) overlaps with IHC triple-
negative samples (black circles) (Panel 4): HER2-enriched subtype (solid color dots) overlaps with 
IHC HER2-positive samples (black circles). 
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Figure 3. Overlap between molecular subtypes and receptor IHC status for PAM50 subtype 
assignment. Notations are the same as Figure 2.  
 
For PAM50 (Figure 3), among 709 IHC ER-positive samples, there were 451 (64%) 
samples were assigned to Luminal subtypes; 22 out of 28 IHC triple-negative samples 
(79 %) were assigned to Basal-like subtype and 10 out of 20 IHC HER2-positive 
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samples (50%) were assigned to HER2-enriched subtype.  
 

70-gene signature 

The 70-gene prognosis profile or MammaPrint®  (Agendia, Amsterdam, The 
Netherlands)9 has been trained on a cohort of lymph-node-negative patients: 
expression of a set of 70 genes that was identified in a ‘‘supervised’’ fashion based on 
their ability to predict freedom from tumor metastasis (favorable prognosis) over a 
five-year period in the same dataset. It was validated subsequently on NKI295, a 
larger cohort consisting both node negative and positive patients10 and another 
validation study11 was done on cohorts of 241 patients with 1–3 positive lymph nodes. 
Despite the fact that part of the validation set in the original retrospective validation 
study10 was overlapped with the training set of the signature9, the 70-gene signature 
has been validated in the independent cohort by the TRANSBIG consortium12. 
Espinosa et. al13 reproduced with quantitative reverse-transcriptase polymerase chain 
reaction (qRT-PCR) the results obtained with a 70-gene expression profile. 
 
The gene signature classifies patient into good or bad prognostic group by the average 
profile of previously determined 70 genes in tumors from patients with a good 
prognosis. A patient with a correlation coefficient of more than 0.4 was then assigned 
to the group with a good-prognosis signature and all other patients were assigned to 
the group with a poor-prognosis signature. The threshold was set to achieve a 10 
percent rate of false negative results in the 78 tumors in the previous study9.  
 

Wound response gene signature 

The wound response or core serum response (CSR) gene signature19 was derived from 
the transcriptional response of normal fibroblasts to serum in cell culture. It has been 
shown to improve the risk stratification of early breast cancer over that provided by 
standard clinic pathological features, in that the development of distant metastases is 
more likely among patients whose breast cancers have activated pathways for matrix 
remodeling, cell motility, and angiogenesis than among those whose cancers do not. 
The signature classifies tumors into two classes (Activated vs. Quiescent) through a 
centroid, which was built from the averaged fibroblast serum-induced expression 
pattern of the CSR genes19, 20.  
 
Computing Pearson correlation between the CSR genes expression of a tumor and the 
serum-activated fibroblast centroid results in a quantitative score reflecting the wound 
response for the tumor. The higher the correlation value, the more the sample 
resembles serum-activated fibroblasts (“activated” wound response signature). A 
negative correlation value indicates the opposite behavior and higher expression of 
the “quiescent” wound response signature. The threshold for the two classes can be 
moved up or down from zero depending on the clinical goal.  
 
Gene expression matrix in the original studies19, 20 was mean-centered prior to 
deriving the centroid. Median-centering was applied to each of the genes in 
expression data in this study.  
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Hypoxia signature 

The epithelial hypoxia signature21 consists of genes (253 image clones) that were 
consistently induced by hypoxia in cultured epithelial cells (HMECs and RPTECs). 
The 253 image clones were mapped to 168 Unigene clusters in the study 21. A 
“hypoxia score” was computed for a patient by averaging expression levels for the 
hypoxia response genes. Patients were assigned into high or low hypoxia response 
group by a cutoff hypoxia-score at zero22. A positive score indicates hypoxic and 
nonpositive score indicates non-hypoxic. Using published data sets, the authors found 
that the “high hypoxia response” group tends to be higher grade, and more likely to 
have p53 and oestrogen receptor deficiencies, and, most importantly, a significant 
association with a poorer prognosis in breast and ovarian cancer.   
 
The signature was downloaded from the publication website (http://microarray-
pubs.stanford.edu/hypoxia/).  
 
Genes were mean centered in the original studies 21. We performed median centering 
on each of the genes in this study.   
 

76-gene signature  (Veridex) 

The 76-gene signature14 (Veridex) is designed to predict distant metastasis within 5 
years for lymph-node-negative breast cancer patients. It was original developed in 
Wang et. al study14 based on 286 lymph-node-negative breast cancer patients with 
expression profiles from Affymetrix U133a platform and validated on an independent 
multicentric population of 180 untreated N- breast cancer patients15 and another gene 
expression study  of 198 node-negative breast cancer patients16 from the same 
microarray platform as in the original study14.  
 
Original algorithm 
 
The 76-gene signature14 is defined as a hierarchical model using two linear 
combinations of the top gene expressions with respect to a ranking based on Cox’s 
proportional hazards model. The choice of the linear combination to compute the risk 
score depends on the estrogen receptor status of the patient. The gene signature 
consists of 60 ER+ markers and 16 ER- markers. Relapse score is calculated for ER+ 
and ER- samples using sum of the weighted log2-gene-expression of the 60 genes and 
16 genes, respectively: 

  

A + w
i
x

i
i=1

60

∑  (for ER positive sample)

B + u
j
y

j
j =1

16

∑  (for ER negative sample)

 

where i and j indicate markers for ER positive and ER negative group, respectively; 
wi and uj are the standardized Cox regression coefficients for ER positive and ER 
negative markers, respectively; xi and yj are the expression values in log2 scale of ER 
positive and ER negative markers, respectively. A and B are constants 313.5 and 280, 
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respectively. A negative relapse scores is defined as “good-prognosis” and positive or 
0 as "poor-prognosis".  
 
Population-based classification 
 
Based on the procedure that derived the signature, the constants A and B in the 
relapse model are likely platform dependent. Ideally, applying this signature on a new 
dataset, one should follows the same protocol using the same platform with the same 
normalization procedure (log2 value; MAS5 normalized with a global mean 600).  
 
For expression data from different platform, a more generalized population-based 
approach for 76-gene signature is sensible for pure prognosis purpose on the new 
cohort. For computing the raw relapse scores on Node negative sample, the same 
procedure14 stays. However, instead of scaling by the constants A and B and further 
apply 0 as cutoff, the "good” prognosis is defined as less than 30% percentile of the 
raw relapse score in ER+ group and less than 22% percentile in ER- group. These 
thresholds were determined from the Desmedt et. al validation study 16, where  around 
30% ER positive patients were classified in the good prognosis group in while around 
22% in the ER negative group was good prognosis.  
 
Original classifier VS Population-based classifier 
 
The Affy947 dataset consisting 147 samples in Desmedt et . al 200716. Overlapping 
samples (n = 51) with other sets in this study were excluded from this study. For 
control purpose, we compared the published risk grouping calls of the 147 samples16, 
which were generated on MAS5 processed dataset, with the predictions from the same 
samples on RMA processed data in our study. All the 147overlapping samples were 
classified as poor prognosis group in this study, while in Desmedt study16 40 samples 
were classified as good prognosis and 107 samples were in poor prognosis group.  
 
The discrepancies suggested that the risk cutoffs and most likely the gene weights in 
the original 76-gene signature algorithm were sensitive to the data scale, which 
resulted from different normalization procedures given the same array platform.  
 
Using population-based cutoffs for prognosis, we observed comparable results to the 
published calls of the 147 Desmedt samples.  
 
 Population-based prognostic group in the study 
Risk assignment in Desmedt et al 16 Good Poor 
Good 26 14 
Poor 0 107 
 
The raw relapse score was a significant predictor in a univariate Cox model for 
DMFS in the complete dataset (p =2.04e-11), significant in node positive group (p = 
0.00527) and in node negative group (p = 5.42e-09).  
 
Survival probabilities for distant metastasis associated with the risk groups identified 
using the raw relapse scores by the population-based strategy were shown in the 
following plot for node positive and node negative group, respectively (Figure 4).  
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Figure 4. Kaplan meier plots for 76-gene risk groups for distant metastasis by population-based 
strategy in node subgroups. 
 
 
Applicability on cohort with specific clinical characteristics 
 
The 76-gene signature has been validated only on node negative cohorts15, 16. We did 
observe evidence suggesting that the signature was predictive for the node positive 
patients in the study (p = 0.00527 for continuous raw relapse score predicting DMFS 
in a Cox model; p = 0.0027 for population-based dichotomized risk groups for 
predicting DMFS). We applied this gene signature on the full dataset (n = 947) 
regardless of the node status.  
 

Genomic Grade Index (GGI) 

The genomic grade index (GGI) is a 97-gene measure of histologic tumor grade. The 
GGI was able to reclassify patients with histologic grade 2 tumors into two groups 
with distinct clinical outcomes similar to those of histologic grade 1 and 3, 
respectively17. High GGI is associated with decreased relapse-free survival in both 
untreated and tamoxifen-treated patients18. 
 
The GGI model consists of a linear combination of the expressions of the top ranked 
128 Affymetrix probes (97 genes) according to their standardized mean difference 
between patients with histologic grade 1 and 3 tumors. The weights of the linear 
combination are simply the signs of the ranking statistics. The model was developed 
from data from Affymetrix U133A platform, RMA processed (with background 
correction, quantile normalization, and log transformation).  
 
Because of the dependence between ER status and histologic grade; almost all ER-
negative tumors were classified as either intermediate or high histologic grade, the 
authors17 used only ER-positive tumors (33 histologic grade 1 tumors and the 31 
histologic grade 3 tumors) for selecting the genes that were differentially expressed 
between histologic grade 1 and 3 tumors by a modified version of t test. Despite the 
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fact that the GGI genes were selected from ER positive cohort, the validation study 
were done on consecutive cohorts with both ER positive and ER negative tumors, as 
well as adjuvant systemic therapy treated and untreated patients, suggesting the usage 
of GGI on fairly heterogeneous breast cancer cohorts.   
 
Original algorithm 
 
Genomic Grade Index signature or grade-associated-97-gene signature 17 contain 128 
affy probes (97 genes), of which 112 probes were with increased expression in 
histologic grade 3 tumors; and the remaining 16 probes with increased expression in 
histologic grade 1 tumors. The expressions of the 97 grade associated genes were 
further combined into the genomic grade index (GGI) by: 

  
raw GGI = x

j
j∈G3

∑ − x
j

j∈G1

∑  

where xj is the expression of either a grade 1 marker or grade 3 marker.  The raw GGI 
scores were further scaled so that the mean of the GGI scores of histologic grade 1 
tumors was − 1 and that of histologic grade 3 tumors was +1: 

  
GGI = scale( x

j
j∈G3

∑ − x
j

j∈G1

∑ − offset)  

After scaling, tumors with negative GGI value were assigned as gene expression 
grade of 1 and tumors with zero or positive GGI were assigned as gene expression 
grade of 3.  
 
In the original publication 17 the GGI signature was proposed to classify histologic 
grade 2 samples (or samples neither HG1 nor HG3) into "HG1-like" & "HG3-like". In 
doing so, the information of HG status are needed for the new data; the raw GGI 
scores are then scaled by grade status in the data with mean gene expression grade 
index of histologic grade 1 tumors was − 1 and that of histologic grade 3 tumors was 
+1. For those tumors with negative GGI score were classified as "HG1-like"; 0 or a 
positive GGI score put a tumor into "HG3-like" category (Figure 5).  
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Figure 5. Distribution of the GGI scores by its classifications on Affy947 dataset. The raw GGIs were 
standardized so that the histologic grade 1 (HG1) group centered − 1 and histologic grade 3 (HG3) 
group centered +1. GGI classified HG 2 tumors into G1-like and G3-like.  
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Population-based classification 
 
The cutoff based on histologic grade is suitable to discriminate HG1 and HG3-like 
tumors and is applicable to datasets from various sources and microarray platforms 17. 
However, it may not be suitable for prognosis studies where it is usually advisable to 
have a small set of low-risk patients to ensure a high sensitivity. In Haibe-Kains et al 
study,38 the authors dichotomized the raw GGI into "low-risk" and "high-risk" group 
based on 33% percentile in two populations, VDX and TRANSBIG, respectively: the 
third of the patients having the lowest GGI scores being defined as low-risk and the 
remaining patients as high-risk. The population based prognostic strategy for GGI 
signature particularly requires the samples are a good representative of the population 
of breast cancer with consecutive clinical parameter distribution. 
 
Original classifier VS Population-based classifier 
 
Survival probabilities of the original classifier and the population based classifier 
were compared in the endpoint distant metastasis (Figure 6). 
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Figure 6. Kaplan meier plots for GGI risk groups for distant metastasis by the original classifier (left) 
and the prognosis groups using the population-based strategy (right). 
 
 

Oncotype DX (21-gene Genomic Health signature) 

Oncotype DX® (Genomic Health Inc., Redwood City, CA)23 was developed 
specifically as a prognostic and predictive test for the benefit of chemotherapy in 
women with node-negative, estrogen receptor (ER)-positive breast cancer who have 
been treated with tamoxifen. This test is now extending its application as a predictive 
test for chemo therapy response in women with node-positive disease based on the 
results from the retrospective analysis of a trial conducted by the South Western 
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Oncology Group, which showed little or no benefit from chemotherapy in a low-risk 
node-positive patient group with tumors similar to those assessed in the node-negative 
setting.24 
 
Original algorithm 
 
Oncotype DX® is a 21-gene reverse transcription (RT)-PCR assay that was developed 
using a candidate-gene approach. It includes 16 cancer-related genes that can be 
grouped into five different biological domains—proliferation, HER2 signaling, ER 
signaling, invasion and other—along with five reference genes. The expression for 
each of the 16 cancer-related genes on RT-PCR assay (the number of cycles required 
to achieve a threshold, or Ct in triplicate, aggregated) is normalized relative to the 
expression of the five reference genes (ACTB, GAPDH, GUS, RPLPO, and TFRC) 
by subtracting the average of the expression of the reference gene. Reference-
normalized expression measurements ranged from 0 to 15, where one unit increase 
reflects approximately a 2-fold increase in RNA, and further were linear combined 
into a recurrence score, RS.  The score quantifies the likelihood of distant recurrence 
at 10 years in adjuvant-tamoxifen-treated patients with lymph node-negative, ER-
positive breast cancer into categories of high risk (RS ≥ 31), intermediate risk (18 ≤ 
RS < 31), and low risk of recurrence (RS < 18).  
 
To calculate the Recurrence Score, first, the scores for five different biological 
domains are computed as linear combination of the corresponding genes. 

  

GRB7 group score =  0.9 ×GRB7 + 0.1 × HER2
GRB7 group score =  8 if  GRB7 group score <  8  
  ER group score = (0.8 × ER + 1.2 × PGR + BCL2 + SCUBE2) ÷ 4

 

  

Proliferation group score =  (Survivin + KI 67 + MYBL2 +CCNB1 + STK15) ÷ 5
Proliferation group score = 6.5 if  proliferation group score <  6.5

 

  Invasion group score = (CTSL2 +MMP11) ÷ 2
  

The unscaled RS is then computed as:  

  

RSu = 0.47 ×GRB7 group score − 0.34 × ER group score + 1.04 × proliferation group score
          + 0.10 × invasion group score + 0.05 ×CD68 - 0.08 ×GSTM1 - 0.07 × BAG1
 
The RSu is further scaled into the reported Oncotype RS by: 

  

RS =  0 if  RSu < 0;  
RS = 20 × (RSu - 6.7) if  0 ≤ RSu ≤ 100;  
RS = 100 if  RSu > 100

 

 
Recalibration Oncotype DX® on microarray data 
 
The normalized log2 ratios from the Affymetrix microarrays were rescaled to range 0 
to 15, comparable to the “reference-normalized” expression in the RS calculation.23 
Pseudo Oncotype DX® Recurrence Score per patient was obtained by using the same 
grouping and coefficients used for the calculation of unscaled Recurrence Score for 
the Oncotype DX® assay. Due to the differences between microarray and the RT-PCR 
assay, applying original cutoffs for risk group identifications most likely are no longer 
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optimal or applicable. Instead of using cutoffs (0-18, 19-30, 31-100) to assign patients 
into the low, intermediate or high risk, we applied a population-based classification 
using the reported risk group percentages23 where 27% patients with high score were 
assigned as “high risk”, and 51% with low score as “low risk”, and rest 22% patients 
were assigned to the  “intermediate risk” group.  
 
Original cutoffs VS Population-based cutoffs 
 
There is moderate agreement of the identified risks groups between applying the 
original cutoffs and the population based approach (kappa = 0.37) on the ER+ and 
node- subset. Survival probabilities of the original classifier and the population-based 
classifier were compared in the endpoint distant metastasis (Figure 7). The continuous 
unscaled RS was a significant predictor in a Cox model (DMFS) in the complete set 
(p = 2.72e-10) and ER + group (p = 4.73e-12) but not in the ER- group (p = 0.555). 
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Figure 7. Kaplan meier plots for RS risk groups for distant metastasis identified by population-based 
strategy on unscaled Recurrence Score (RSu; left fig.) and the prognosis groups using the original 
classifier – applied the reported cutoffs on the scaled Recurrence Score (RS; right fig.).	  
 
Applicability on cohort with specific clinical characteristics 
 
The Oncotype DX® applies to ER positive breast cancer patients for predicting 
recurrence, as no validation study has been done on ER negative cohort. Similar 
indications was observed on this dataset: the unscaled RS predicting of distant 
metastasis free survival in a Cox model for ER negative group was not significant  (p 
= 0.555). However, we applied this gene signature on the complete set regardless of 
ER status to tradeoff between predictive ability and sample size. 
 

EndoPredict   

Recently, the EndoPredict 25 has been introduced as a novel qRT-PCR test for 
predicting the likelihood of distant recurrence in patients with ER-positive, HER2-
negative breast cancer treated with adjuvant endocrine therapy only. The models were 
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adjusted for possible confounding covariates including ki67 and PgR. EndoPredict 
showed a significant added value to classic prognostic factors.  
 
Original algorithm 
 
The EP signature was developed using a candidate approach, and the formation of the 
test is quite similar to Oncotype DX®. The EP score is based on the quantification of 
mRNA levels of eight cancer-related genes (BIRC5, UBE2C, DHCR7, RBBP8, IL6ST, 
AZGP1, MGP, and STC2) in qRT-PCR assay, which is normalized relative to the 
expression of the three reference genes (CALM2, OAZ1, and RPL37A). The unscaled 
risk score is further computed as:  
Su = 0.41 ×BIRC5 − 0.35 ×RBBP8 + 0.39 ×UBE2C − 0.31 × IL6ST
      − 0.26 ×AZGP1 + 0.39 ×DHCR7 - 0.18 ×MGP − 0.15 × STC2 − 2.63

 

 
To avoid negative score values, the rescaled EP risk core is defined as:  

 
Threshold for EP to discriminate patients into low and high risk of distant recurrence 
was set at 5. 
 
Recalibration EP signature 
 
Due to the differences between microarray and the RT-PCR assay, applying original 
cutoffs for risk group identifications most likely are no longer optimal or applicable. 
Pseudo EP Score per patient was obtained by using the same grouping and 
coefficients used for the calculation of unscaled risk score Su for EP. Instead of using 
cutoff 5 to assign patients into the low or high risk on the scaled risk score s, we 
applied a population-based classification using the reported risk group percentages 39 
(also based on personal commutation with the original author) where 49% patients 
with low score were assigned as “low risk”, and rest patients were assigned to the  
“high risk” group.  
 
Original cutoffs VS Population-based cutoffs 
 
Applying the reported cutoff on the scaled risk score s, all samples were classified in 
the high risk group. Although the genes in EP algorithm were those tend to have 
highly correlated expression levels between PCR and microarray, the original training 
set was MAS5 processed Affymetrix dataset. Most likely, the reported coefficients 
and the cutoffs are not optimal for the RMA processed data in our study.   
 
Meanwhile, using the population-based strategy on all samples (n = 947), 49% patient 
(n = 464) was assigned to low risk group and the rest 483 patients were classified as 
high risk.  
 
Applicability on cohort with specific clinical characteristics 
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The EndoPredict was originally designed for ER-positive, HER2-negative breast 
cancer patients for predicting distant recurrence, as no validation study has been done 
on ER negative or HER2-postive cohort. The unscaled risk score Su predicting of 
distant metastasis free survival in a univariate Cox model on the complete dataset (n= 
912, HR = 1.33, p = 4.3e-11) was comparable to the prediction for ER-positive, 
HER2-negative sub group (n= 627, HR = 1.46, p = 4.9e-11). In addition, the 
probabilities for distant metastasis associated with individual risk groups from the 
population-based strategy were significantly separated on the complete set, the ER-
positive, HER2-negative subset, the ER-positive, HER2-negative treated and 
untreated subset, respectively (Figure 8). In our study, we applied the population-
based strategy for this gene signature on the complete set (n = 912) regardless of ER 
and HER2 status. 
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Figure 8. Kaplan meier plots for EP risk groups for distant metastasis identified by population-based 
strategy on unscaled risk score on the completed dataset (A; n = 912), ER-positive, HER2-negative 
subgroup (B; n = 627), ER-positive, HER2-negative treated with systemic treatment subgroup (C; n = 
331) and ER-positive, HER2-negative not treated with systemic treatment subgroup (D; n = 254).	  
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iv. Statistical analysis 

Model evaluation: concordance index (C-index) 

The concordance index (C-index)40 is a widely accepted measurement for predictive 
discrimination of a given model. In survival analysis, it is a generalization of the area 
under the receiver operating characteristic (ROC) curve. The C-index is defined as the 
probability that risk assignments to members of a random pair are accurately ranked 
according to their prognosis. It measures the probability of concordance between the 
predicted and observed responses in terms of lengths of survival of any two patients: 

  
C − index =

1{r
i
> r

j
}

i, j∈Ω∑
| Ω |

 

where ri and rj  are the predicted risk for ith and jth patient; respectively. Ω is a set of 
all possible pairs of patients, at least one of whom has experienced an event and  time 
to event ti < tj. If the predicted risk is larger for the patient who lived shorter, the 
predictions for that pair are said to be concordant with the outcomes. The number of 
concordant pairs (order of failure and risk assignment agree), discordant pairs (order 
of failure and risk assignment disagree), and uninformative pairs are tabulated to 
calculate the measure. The C-index is ranging from 0 to 1. Values of 0.5 indicate 
random prediction and higher values indicate increasing prediction accuracy.  
 
Variability in the C-index for each predictor and P values from comparisons were 
estimated from 1,000 bootstrap samples of the risk assignments. Calculation was done 
using the rcorrcens and rcorr.cens function implemented in the Hmisc (19) library in 
R statistical analysis environment41 version 2.12.2. 
 

Model evaluation: proportion of variation explained (PVE) 

Comparable with the R2 in regression modeling, the importance of covariates in the 
Cox model can be quantified using the proportion of variation explained in the 
outcome variable (PVE) 42 by one or more covariates: 

 

  

R
M
2 = 1 − L

R
/ L

U( )2/n

L
R

: likelihood of a model without covariates restricted( )
L

U
: likelihood of a model with covariates unrestricted( )

  

where n denotes total sample size. The relative importance of a covariate in a 
multivariate Cox model was measured by the partial PVE, which was calculated as 
the different of 2

MR  for the full model and 2
MR

 for a model with a factor of interest 
excluded.  
 

Time-dependent effect estimation 
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A univariate Cox model taking individual gene signature as predictor and ER as 
stratification covariate was fitted. Tests for the proportional-hazards assumption were 
performed by correlating the scaled Schoenfeld residuals with Kaplan-Meier 
estimates43. The scaled Schoenfeld residual is the difference between the covariate at 
the failure time and the expected value of the covariate at this time. When the 
proportional-hazards assumption is satisfied, the scaled Schoenfeld residuals should 
be evenly distributed around 0 along the time span; any systematic pattern would 
indicate non-constant effect of the covariate over time. The function cox.zph in the R 
library survival was used.  
 
In order to unveil the nature of the non-proportional deviation, we used the additive 
regression model, namely Aalen’s additive nonparametric model 44, 45 to investigate 
the time-dependent effect of jth gene signature for survival prediction by 

  
h(t) = h

0
(t) + β

j
(t)x

j
 

where xj is the risk score from the jth gene signature and   h0 (t)  is the baseline hazard 
function, while the βj (t) is the increase in the hazard at time t corresponding to a 
unit´s increase in the jth gene signature (covariate). The parameter βj (t) is an arbitrary 
regression function and is assumed to impact additively upon the (unknown) baseline 
hazard, allowing the effect to change in magnitude and even sign with time. 
Continuous risk scores from each of the original gene signatures were used as 
numeric covariate in a univariate additive regression model. The covariate was mean-
centered prior to estimating the cumulative baseline hazard. The additive model was 
fitted using function addreg implemented in R 
(http://www.med.uio.no/imb/stat/addreg/beta/Addreg-beta.html). 
 
Our interpretations of the cumulative regression function estimator from an additive 
model were focused on the slope of the estimated curve and its evolvement along 
timeline, which reflected the effect of a specific gene signature changing over time for 
survival prediction. The additive model gives an appealing understanding of how the 
hazard profile of a gene signature is distributed. However, the cumulative regression 
functions do not easily transform into a single numerical estimate of the covariate 
effect. We then reply on Cox model within time interval to quantify the relative risk 
or hazard ratio (HR) for 1-unit-increase in risk prediction by a specific gene 
signature. The Hazard Ratio (HR) is usually an accuracy measure for the risk group 
prediction for categorical predictors. The larger the HR, the better is the 
discrimination between the groups of the patients, such as low- and high-risk. In our 
study, continuous covariates entering the Cox models were scaled into mean 0 with 
standard deviation 1. Thus the estimated HR on the standardized data characterized 
the relative risk for 1-standard-deviation increase in risk prediction by a gene 
signature. 
 

Software 

All analyses were performed in R statistical analysis platform.41 The R plotting 
system “ggplot2”46 was to used for visualization.   
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III. Supplementary Discussion on Signature 

construction strategies 

 
Methods based on centroid correlations (e.g. subtype signatures, 70-gene and WR) 
and methods that transform the data into an invariant scale before computing the risk 
scores (e.g. GGI) have more consistent performances across different studies. We 
suspect that summarizing expression pattern by weighted average fashion (e.g. 76-
gene, RS and Hypoxia) is more sensitive to the data scale and the issue of missing 
signature-gene(s) in the data at hand.  
 
For the 76-gene signature, the pre-derived constants in the relapse model are likely 
platform-dependent. Additionally, we observed that this signature was unable to 
identify any Desmedt16 sample with good prognosis when applied on RMA- instead 
of MAS5-normalized data. The discrepancies suggested that the risk cutoffs and 
possibly its original gene weights in the algorithm are sensitive to the data scale. 
Similarly for the RS, the reference-normalized expression measurements in this PCR-
derived test ranged from 0 to 15, where one unit increase reflects approximately a 2-
fold increase in RNA. Such exact quantification is less feasible in microarray-based 
measurements. Although GGI shares similarities with these two signatures in 
constructing risk estimation from gene expression pattern, it has a unique 
standardization procedure incorporating the information of histological grade, which 
likely increases its robustness when transferred to different microarray platforms.  
 
Generally, the originally derived cutoffs for risk group assignment often become less 
optimal in a new study. The population-based strategy is more general and applicable 
for a study with pure prognosis purpose on the new cohort. However, it particularly 
requires the samples are a good representative of the population of breast cancer with 
consecutive clinical parameter distribution.  
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IV. Supplementary Results  

Multivariate analysis on gene signature 

With presence of clinical parameters  
 
We tested prognostic power of the gene signatures after adjusting tumor size, lymph 
node status and histological grade. Information added by gene signature on top of 
clinical parameter was tested using analysis of deviance by comparing the following 
Cox models fitted with (model 2) or without the signature covariate:  
 

Model 1: Risk = Clinical parameter + strata(ER) 
Model 2: Risk = Signature + Clinical parameter + strata(ER) 

 
Information added by clinical parameter on top of signature was tested by comparing 
Cox models fitted with (model 2) or without the clinical parameter (model 3):  
 

Model 3: Risk = Signature + strata(ER) 
 
Models were fitted on the same complete dataset with available information for 
endpoint and the tested parameters (n = 760) and for the entire follow-up time. 
 
Gene signatures added significant information to tumor size (Box 1), node (Box 2) 
and histological grade (Box 3), respectively. Histological grade did not contribute 
additional prediction power to most of the gene signatures (Box 4), except for 
Intrinsic (p = 0.017) and Hypoxia (p = 0.001).  
 
Analysis on dataset source as potential confounding factor 
 
The data used in this study was pulled from six published studies, to ensure the 
observations from the study is not cofounded by dataset effect, we included the 
dataset source as a factor in a multivariate Cox model together with gene signature: 
 

Risk = Signature + Dataset + strata(ER) 
 
Models were fitted on the full dataset (n = 912) and for the entire follow-up time. To 
see if dataset source added significant amount of information towards prognosis on 
top on gene signature, analysis of deviance was carried out on deduction of deviance 
due to adding covariate Dataset. We did not observe significant effect associated with 
“Dataset” for any studied gene signatures (Box 5(A)).  
 
We also examined dataset effect separately in ER+ group and ER- group using a 
multivariate Cox model:  

Risk = Signature + Dataset  
We did not observe significant effect associated with “Dataset” for any studied gene 
signatures for the ER+ group (Box 5(B)) nor ER- group (Box 5(C)).  
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Box 1: Analysis of Deviance for information added by signature to Size 
 
# Results for Intrinsic 
Cox model: response is  Surv(t_dmfs, e_dmfs) 
 Model 1: ~ factor(TS) + strata(ER_IHC_expr) 
 Model 2: ~ Intrinsic_RORs + factor(TS) + strata(ER_IHC_expr) 
   loglik  Chisq Df P(>|Chi|)    
1 -1134.2                        
2 -1129.5 9.4153  1  0.002152 ** 
 
# Results for PAM50 
 Cox model: response is  Surv(t_dmfs, e_dmfs) 
 Model 1: ~ factor(TS) + strata(ER_IHC_expr) 
 Model 2: ~ PAM50_RORs + factor(TS) + strata(ER_IHC_expr) 
   loglik  Chisq Df P(>|Chi|)     
1 -1134.2                         
2 -1115.2 38.015  1 7.019e-10 *** 
 
# Results for 70-gene 
 Cox model: response is  Surv(t_dmfs, e_dmfs) 
 Model 1: ~ factor(TS) + strata(ER_IHC_expr) 
 Model 2: ~ gene70 + factor(TS) + strata(ER_IHC_expr) 
   loglik  Chisq Df P(>|Chi|)     
1 -1134.2                         
2 -1122.6 23.378  1 1.331e-06 *** 
 
# Results for 76-gene 
 Cox model: response is  Surv(t_dmfs, e_dmfs) 
 Model 1: ~ factor(TS) + strata(ER_IHC_expr) 
 Model 2: ~ gene76 + factor(TS) + strata(ER_IHC_expr) 
   loglik  Chisq Df P(>|Chi|)     
1 -1134.2                         
2 -1116.7 35.087  1 3.152e-09 *** 
 
# Results for GGI 
 Cox model: response is  Surv(t_dmfs, e_dmfs) 
 Model 1: ~ factor(TS) + strata(ER_IHC_expr) 
 Model 2: ~ GGI + factor(TS) + strata(ER_IHC_expr) 
   loglik  Chisq Df P(>|Chi|)     
1 -1134.2                         
2 -1116.4 35.764  1 2.227e-09 *** 
 
 
# Results for WR 
 Cox model: response is  Surv(t_dmfs, e_dmfs) 
 Model 1: ~ factor(TS) + strata(ER_IHC_expr) 
 Model 2: ~ WR + factor(TS) + strata(ER_IHC_expr) 
   loglik  Chisq Df P(>|Chi|)     
1 -1134.2                         
2 -1119.2 30.177  1 3.943e-08 *** 
 
# Results for Hypoxia 
 Cox model: response is  Surv(t_dmfs, e_dmfs) 
 Model 1: ~ factor(TS) + strata(ER_IHC_expr) 
 Model 2: ~ Hypoxia + factor(TS) + strata(ER_IHC_expr) 
   loglik  Chisq Df P(>|Chi|) 
1 -1134.2                     
2 -1133.5 1.6024  1    0.2056 
 
# Results for RS 
 Cox model: response is  Surv(t_dmfs, e_dmfs) 
 Model 1: ~ factor(TS) + strata(ER_IHC_expr) 
 Model 2: ~ RS + factor(TS) + strata(ER_IHC_expr) 
   loglik  Chisq Df P(>|Chi|)     
1 -1134.2                         
2 -1119.8 28.883  1 7.688e-08 *** 
 
# Results for EP 
 Cox model: response is  Surv(t_dmfs, e_dmfs) 
 Model 1: ~ factor(TS) + strata(ER_IHC_expr) 
 Model 2: ~ EP + factor(TS) + strata(ER_IHC_expr) 
   loglik Chisq Df P(>|Chi|)     
1 -1134.2                        
2 -1115.8 36.97  1   1.2e-09 *** 
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Box 2: Analysis of Deviance for information added by signature to Node 
 
# Results for Intrinsic 
 Cox model: response is  Surv(t_dmfs, e_dmfs) 
 Model 1: ~ factor(Node) + strata(ER_IHC_expr) 
 Model 2: ~ Intrinsic_RORs + factor(Node) + strata(ER_IHC_expr) 
   loglik  Chisq Df P(>|Chi|)    
1 -1138.2                        
2 -1132.9 10.554  1   0.00116 ** 
 
# Results for PAM50 
 Cox model: response is  Surv(t_dmfs, e_dmfs) 
 Model 1: ~ factor(Node) + strata(ER_IHC_expr) 
 Model 2: ~ PAM50_RORs + factor(Node) + strata(ER_IHC_expr) 
   loglik  Chisq Df P(>|Chi|)     
1 -1138.2                         
2 -1118.6 39.188  1  3.85e-10 *** 
 
# Results for 70-gene 
 Cox model: response is  Surv(t_dmfs, e_dmfs) 
 Model 1: ~ factor(Node) + strata(ER_IHC_expr) 
 Model 2: ~ gene70 + factor(Node) + strata(ER_IHC_expr) 
   loglik Chisq Df P(>|Chi|)     
1 -1138.2                        
2 -1127.5 21.25  1 4.032e-06 *** 
 
# Results for 76-gene 
 Cox model: response is  Surv(t_dmfs, e_dmfs) 
 Model 1: ~ factor(Node) + strata(ER_IHC_expr) 
 Model 2: ~ gene76 + factor(Node) + strata(ER_IHC_expr) 
   loglik  Chisq Df P(>|Chi|)     
1 -1138.2                         
2 -1120.3 35.617  1 2.401e-09 *** 
 
# Results for GGI 
Cox model: response is  Surv(t_dmfs, e_dmfs) 
 Model 1: ~ factor(Node) + strata(ER_IHC_expr) 
 Model 2: ~ GGI + factor(Node) + strata(ER_IHC_expr) 
   loglik  Chisq Df P(>|Chi|)     
1 -1138.2                         
2 -1119.3 37.793  1 7.865e-10 *** 
 
# Results for WR 
 Cox model: response is  Surv(t_dmfs, e_dmfs) 
 Model 1: ~ factor(Node) + strata(ER_IHC_expr) 
 Model 2: ~ WR + factor(Node) + strata(ER_IHC_expr) 
   loglik  Chisq Df P(>|Chi|)     
1 -1138.2                         
2 -1118.9 38.508  1 5.453e-10 *** 
 
# Results for Hypoxia 
Cox model: response is  Surv(t_dmfs, e_dmfs) 
 Model 1: ~ factor(Node) + strata(ER_IHC_expr) 
 Model 2: ~ Hypoxia + factor(Node) + strata(ER_IHC_expr) 
   loglik  Chisq Df P(>|Chi|) 
1 -1138.2                     
2 -1137.4 1.5649  1     0.211 
 
# Results for RS 
 Cox model: response is  Surv(t_dmfs, e_dmfs) 
 Model 1: ~ factor(Node) + strata(ER_IHC_expr) 
 Model 2: ~ RS + factor(Node) + strata(ER_IHC_expr) 
   loglik  Chisq Df P(>|Chi|)     
1 -1138.2                         
2 -1122.1 32.174  1  1.41e-08 *** 
 
# Results for EP 
 Cox model: response is  Surv(t_dmfs, e_dmfs) 
 Model 1: ~ factor(Node) + strata(ER_IHC_expr) 
 Model 2: ~ EP + factor(Node) + strata(ER_IHC_expr) 
   loglik  Chisq Df P(>|Chi|)     
1 -1138.2                         
2 -1118.2 39.983  1 2.561e-10 *** 



 28 

 

Box 3: Analysis of Deviance for information added by signature to Grade 
 
# Results for Intrinsic 
Cox model: response is  Surv(t_dmfs, e_dmfs) 
 Model 1: ~ factor(Grade) + strata(ER_IHC_expr) 
 Model 2: ~ Intrinsic_RORs + factor(Grade) + strata(ER_IHC_expr) 
   loglik  Chisq Df P(>|Chi|)   
1 -1142.3                       
2 -1139.4 5.9159  1   0.01501 * 
 
# Results for PAM50 
 Cox model: response is  Surv(t_dmfs, e_dmfs) 
 Model 1: ~ factor(Grade) + strata(ER_IHC_expr) 
 Model 2: ~ PAM50_RORs + factor(Grade) + strata(ER_IHC_expr) 
   loglik  Chisq Df P(>|Chi|)     
1 -1142.3                         
2 -1124.8 35.108  1 3.119e-09 *** 
 
# Results for 70-gene 
 Cox model: response is  Surv(t_dmfs, e_dmfs) 
 Model 1: ~ factor(Grade) + strata(ER_IHC_expr) 
 Model 2: ~ gene70 + factor(Grade) + strata(ER_IHC_expr) 
   loglik  Chisq Df P(>|Chi|)     
1 -1142.3                         
2 -1133.2 18.198  1 1.991e-05 *** 
 
# Results for 76-gene 
 Cox model: response is  Surv(t_dmfs, e_dmfs) 
 Model 1: ~ factor(Grade) + strata(ER_IHC_expr) 
 Model 2: ~ gene76 + factor(Grade) + strata(ER_IHC_expr) 
   loglik  Chisq Df P(>|Chi|)     
1 -1142.3                         
2 -1126.5 31.657  1 1.839e-08 *** 
 
# Results for GGI 
 Cox model: response is  Surv(t_dmfs, e_dmfs) 
 Model 1: ~ factor(Grade) + strata(ER_IHC_expr) 
 Model 2: ~ GGI + factor(Grade) + strata(ER_IHC_expr) 
   loglik  Chisq Df P(>|Chi|)     
1 -1142.3                         
2 -1125.4 33.803  1 6.097e-09 *** 
 
# Results for WR 
 Cox model: response is  Surv(t_dmfs, e_dmfs) 
 Model 1: ~ factor(Grade) + strata(ER_IHC_expr) 
 Model 2: ~ WR + factor(Grade) + strata(ER_IHC_expr) 
   loglik Chisq Df P(>|Chi|)     
1 -1142.3                        
2 -1127.5  29.7  1 5.045e-08 *** 
 
# Results for Hypoxia 
 Cox model: response is  Surv(t_dmfs, e_dmfs) 
 Model 1: ~ factor(Grade) + strata(ER_IHC_expr) 
 Model 2: ~ Hypoxia + factor(Grade) + strata(ER_IHC_expr) 
   loglik  Chisq Df P(>|Chi|) 
1 -1142.3                     
2 -1141.7 1.3663  1    0.2424 
 
# Results for RS 
 Cox model: response is  Surv(t_dmfs, e_dmfs) 
 Model 1: ~ factor(Grade) + strata(ER_IHC_expr) 
 Model 2: ~ RS + factor(Grade) + strata(ER_IHC_expr) 
   loglik  Chisq Df P(>|Chi|)     
1 -1142.3                         
2 -1128.5 27.726  1 1.398e-07 *** 
 
# Results for EP 
 Cox model: response is  Surv(t_dmfs, e_dmfs) 
 Model 1: ~ factor(Grade) + strata(ER_IHC_expr) 
 Model 2: ~ EP + factor(Grade) + strata(ER_IHC_expr) 
   loglik  Chisq Df P(>|Chi|)     
1 -1142.3                         
2 -1124.8 35.085  1 3.156e-09 *** 
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Box 4: Analysis of Deviance for information added by Grade to signature 
 
# Results for Intrinsic 
 Cox model: response is  Surv(t_dmfs, e_dmfs) 
 Model 1: ~ Intrinsic_RORs + strata(ER_IHC_expr) 
 Model 2: ~ Intrinsic_RORs + factor(Grade) + strata(ER_IHC_expr) 
   loglik  Chisq Df P(>|Chi|)   
1 -1143.5                       
2 -1139.4 8.1368  2   0.01711 * 
 
# Results for PAM50 
 Cox model: response is  Surv(t_dmfs, e_dmfs) 
 Model 1: ~ PAM50_RORs + strata(ER_IHC_expr) 
 Model 2: ~ PAM50_RORs + factor(Grade) + strata(ER_IHC_expr) 
   loglik  Chisq Df P(>|Chi|) 
1 -1126.3                     
2 -1124.8 3.0159  2    0.2214 
 
# Results for 70-gene 
 Cox model: response is  Surv(t_dmfs, e_dmfs) 
 Model 1: ~ gene70 + strata(ER_IHC_expr) 
 Model 2: ~ gene70 + factor(Grade) + strata(ER_IHC_expr) 
   loglik  Chisq Df P(>|Chi|)   
1 -1136.4                       
2 -1133.2 6.2753  2   0.04339 * 
 
# Results for 76-gene 
 Cox model: response is  Surv(t_dmfs, e_dmfs) 
 Model 1: ~ gene76 + strata(ER_IHC_expr) 
 Model 2: ~ gene76 + factor(Grade) + strata(ER_IHC_expr) 
   loglik  Chisq Df P(>|Chi|) 
1 -1127.9                     
2 -1126.5 2.6922  2    0.2603 
 
# Results for GGI 
 Cox model: response is  Surv(t_dmfs, e_dmfs) 
 Model 1: ~ GGI + strata(ER_IHC_expr) 
 Model 2: ~ GGI + factor(Grade) + strata(ER_IHC_expr) 
   loglik  Chisq Df P(>|Chi|) 
1 -1127.7                     
2 -1125.4 4.5252  2    0.1041 
 
# Results for WR 
 Cox model: response is  Surv(t_dmfs, e_dmfs) 
 Model 1: ~ WR + strata(ER_IHC_expr) 
 Model 2: ~ WR + factor(Grade) + strata(ER_IHC_expr) 
   loglik  Chisq Df P(>|Chi|) 
1 -1129.6                     
2 -1127.5 4.1341  2    0.1266 
 
# Results for Hypoxia 
 Cox model: response is  Surv(t_dmfs, e_dmfs) 
 Model 1: ~ Hypoxia + strata(ER_IHC_expr) 
 Model 2: ~ Hypoxia + factor(Grade) + strata(ER_IHC_expr) 
   loglik  Chisq Df P(>|Chi|)     
1 -1148.7                         
2 -1141.7 14.067  2 0.0008817 *** 
 
# Results for RS 
 Cox model: response is  Surv(t_dmfs, e_dmfs) 
 Model 1: ~ RS + strata(ER_IHC_expr) 
 Model 2: ~ RS + factor(Grade) + strata(ER_IHC_expr) 
   loglik  Chisq Df P(>|Chi|)   
1 -1130.8                       
2 -1128.5 4.6782  2   0.09641 .  
 
# Results for EP 
 Cox model: response is  Surv(t_dmfs, e_dmfs) 
 Model 1: ~ EP + strata(ER_IHC_expr) 
 Model 2: ~ EP + factor(Grade) + strata(ER_IHC_expr) 
   loglik  Chisq Df P(>|Chi|) 
1 -1126.4                     
2 -1124.8 3.1582  2    0.2062 
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Box 5: Analysis of Deviance for model with individual gene signature & dataset as 
covariates: 
(A) In ER-stratified cox model  
 
Analysis of Deviance Table 
Cox model: response is Surv(t_dmfs, e_dmfs) 
Terms added sequentially (first to last) 
 
# Results for Intrinsic 
                 loglik  Chisq Df Pr(>|Chi|)    
NULL            -1442.5                         
Intrinsic_RORs  -1437.7 9.5240  1   0.002028 ** 
factor(Dataset) -1434.4 6.5953  5   0.252521    
 
# Results for PAM50 
                 loglik   Chisq Df Pr(>|Chi|)     
NULL            -1442.5                           
PAM50_RORs      -1417.3 50.2752  1  1.336e-12 *** 
factor(Dataset) -1413.7  7.1689  5     0.2084     
 
# Results for 70-gene 
                 loglik   Chisq Df Pr(>|Chi|)     
NULL            -1442.5                           
gene70          -1432.1 20.7018  1  5.367e-06 *** 
factor(Dataset) -1428.6  7.0919  5     0.2139     
 
# Results for 76-gene 
                 loglik  Chisq Df Pr(>|Chi|)     
NULL            -1442.5                          
gene76          -1419.8 45.315  1  1.677e-11 *** 
factor(Dataset) -1416.7  6.301  5      0.278     
 
# Results for GGI 
                 loglik   Chisq Df Pr(>|Chi|)     
NULL            -1442.5                           
GGI             -1421.6 41.7951  1  1.014e-10 *** 
factor(Dataset) -1418.1  6.8889  5      0.229     
 
# Results for WR 
                 loglik  Chisq Df Pr(>|Chi|)     
NULL            -1442.5                          
WR              -1422.0 40.852  1  1.642e-10 *** 
factor(Dataset) -1417.3  9.506  5     0.0905 .   
 
# Results for Hypoxia 
                 loglik  Chisq Df Pr(>|Chi|)   
NULL            -1442.5                        
Hypoxia         -1440.1 4.7104  1    0.02998 * 
factor(Dataset) -1437.2 5.8519  5    0.32090   
 
# Results for RS 
                 loglik   Chisq Df Pr(>|Chi|)     
NULL            -1442.5                           
RS              -1425.2 34.4446  1  4.386e-09 *** 
factor(Dataset) -1421.6  7.3237  5     0.1977   
 
# Results for EP 
                 loglik   Chisq Df Pr(>|Chi|)     
NULL            -1442.5                           
EP              -1422.0 40.9558  1  1.557e-10 *** 
factor(Dataset) -1419.0  5.9849  5     0.3077     
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Box 5: Analysis of Deviance for model with individual gene signature & dataset as 
covariates: 
(B) In ER+ group 
 
Analysis of Deviance Table 
Cox model: response is Surv(t_dmfs, e_dmfs) 
Terms added sequentially (first to last) 
 
# Results for Intrinsic 
                 loglik  Chisq Df Pr(>|Chi|)    
NULL            -1078.3                         
Intrinsic_RORs  -1073.4 9.7678  1   0.001776 ** 
factor(Dataset) -1070.0 6.8858  5   0.229275    
 
# Results for PAM50 
                 loglik   Chisq Df Pr(>|Chi|)     
NULL            -1078.3                           
PAM50_RORs      -1049.3 57.9666  1  2.665e-14 *** 
factor(Dataset) -1046.4  5.9327  5     0.3128     
 
# Results for 70-gene 
                 loglik   Chisq Df Pr(>|Chi|)     
NULL            -1078.3                           
gene70          -1062.7 31.2201  1  2.304e-08 *** 
factor(Dataset) -1059.0  7.4325  5     0.1904     
 
# Results for 76-gene 
                 loglik   Chisq Df Pr(>|Chi|)     
NULL            -1078.3                           
gene76          -1056.9 42.8605  1  5.879e-11 *** 
factor(Dataset) -1053.1  7.5285  5     0.1842     
 
# Results for GGI 
                 loglik   Chisq Df Pr(>|Chi|)     
NULL            -1078.3                           
GGI             -1050.3 56.0692  1  6.994e-14 *** 
factor(Dataset) -1047.4  5.8061  5     0.3255     
 
# Results for WR 
                 loglik  Chisq Df Pr(>|Chi|)     
NULL            -1078.3                          
WR              -1055.0 46.545  1  8.955e-12 *** 
factor(Dataset) -1050.0 10.058  5    0.07361 .   
 
# Results for Hypoxia 
                 loglik  Chisq Df Pr(>|Chi|) 
NULL            -1078.3                      
Hypoxia         -1078.2 0.1256  1      0.723 
factor(Dataset) -1074.1 8.3706  5      0.137 
 
# Results for RS 
                 loglik   Chisq Df Pr(>|Chi|)     
NULL            -1078.3                           
RS              -1057.1 42.4384  1  7.294e-11 *** 
factor(Dataset) -1054.3  5.5636  5      0.351     
 
# Results for EP 
                 loglik   Chisq Df Pr(>|Chi|)     
NULL            -1078.3                           
EP              -1053.5 49.5324  1  1.951e-12 *** 
factor(Dataset) -1051.1  4.9521  5     0.4218     
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Box 5: Analysis of Deviance for model with individual gene signature & dataset as 
covariates: 
(C) In ER- group 
 
Analysis of Deviance Table 
Cox model: response is Surv(t_dmfs, e_dmfs) 
Terms added sequentially (first to last) 
 
# Results for Intrinsic 
                 loglik  Chisq Df Pr(>|Chi|) 
NULL            -364.14                      
Intrinsic_RORs  -363.88 0.5204  1     0.4707 
factor(Dataset) -362.17 3.4243  5     0.6349 
 
# Results for PAM50 
                 loglik  Chisq Df Pr(>|Chi|) 
NULL            -364.14                      
PAM50_RORs      -364.00 0.2851  1     0.5934 
factor(Dataset) -362.21 3.5646  5     0.6136 
 
# Results for 70-gene 
                 loglik  Chisq Df Pr(>|Chi|) 
NULL            -364.14                      
gene70          -363.71 0.8638  1     0.3527 
factor(Dataset) -361.97 3.4811  5     0.6262 
 
# Results for 76-gene 
                 loglik  Chisq Df Pr(>|Chi|)   
NULL            -364.14                        
gene76          -362.45 3.3739  1    0.06624 . 
factor(Dataset) -361.28 2.3482  5    0.79916   
 
# Results for GGI 
                 loglik  Chisq Df Pr(>|Chi|) 
NULL            -364.14                      
GGI             -364.13 0.0249  1     0.8747 
factor(Dataset) -362.46 3.3234  5     0.6503 
 
# Results for WR 
                 loglik  Chisq Df Pr(>|Chi|) 
NULL            -364.14                      
WR              -363.47 1.3316  1     0.2485 
factor(Dataset) -361.49 3.9615  5     0.5550 
 
# Results for Hypoxia 
                 loglik  Chisq Df Pr(>|Chi|)   
NULL            -364.14                         
Hypoxia         -359.65 8.9698  1   0.002745 ** 
factor(Dataset) -358.44 2.4233  5   0.787997    
 
# Results for RS 
                 loglik   Chisq Df Pr(>|Chi|)     
NULL            -364.14                      
RS              -363.96 0.3500  1     0.5541 
factor(Dataset) -362.14 3.6496  5     0.6009 
 
# Results for EP 
                 loglik  Chisq Df Pr(>|Chi|) 
NULL            -364.14                      
EP              -364.12 0.0423  1     0.8371 
factor(Dataset) -362.43 3.3839  5     0.6410 
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