

BL6
IL-15 KO
IL-15 TG
MT
IL-15 KO/MT
IL-15 TG/MT

CD4

CDS4

CD4

CO4

CD44

CD 44

CD4

CD4

Supplemental Figure 1: IFN γ production by CD8 T cells in the tumor and the spleen of IL-15 TG/MT and MT mice. (A \& B) CD8 T cells were isolated by positive selection from tumors of mice and stimulated non-specifically. (A) After stimulation, IL-15 TG/MT CD8 T cells had a higher proportion of CD44+CD62L+ (central memory) cells. (B) Of the CD8+CD3+ T cells, it was the CD44+, both CD62L positive or negative, cells that were capable of producing IFN γ. ($\mathrm{n}=3 /$ group) ($\mathrm{C}-\mathrm{F}$) CD8 T cells were isolated by positive selection from spleens of mice and stimulated non-specifically. (C) After 48 hours, supernatant IFN $\gamma / \mathrm{TNF} \alpha$ levels were highest in IL-15 TG/MT spleen CD8 cultures ($\mathrm{n}=3 \mathrm{MT}$ and IL-15 TG/MT, $\mathrm{n}=1 \mathrm{BL} / 6$ and IL-15 TGrepresentative of 3 experiments). In another set of experiments, after 12 hours of stimulation, Golgi Stop was added to determine which cells were capable of producing IFN γ (D-F). (D) A higher proportion of IL-15 TG/MT splenic CD8+CD3+ cells produced IFN γ in comparison to MT CD8 T cells. (E) After stimulation, IL-15 TG/MT CD8 T cells had a higher proportion of CD44+ CD62L- (effector/effector memory) and CD44+CD62L+ (central memory) cells. (F) It is the CD44+ cells that are capable of producing IFN γ ($\mathrm{D}-\mathrm{F}, \mathrm{n}=3$ MT and IL-15 TG/MT, $\mathrm{n}=2$ BL/6, IL-15 KO, IL-15 TG, IL-15 KO/MT).

Supplemental Figure 2: IL-15 TG/MT tumors possess high levels of CD8+CD3+NK1.1+ T cells. (A) Tumors were digested and stained for CD45, CD8, CD3, and NK1.1 for flow cytometric analysis. IL-15 TG/MT tumors possessed high levels of unique CD8+CD3+NK1.1+ T cells (representative of 2 experiments, here $\mathrm{n}=2 / \mathrm{group}$) (B) When CD8 T cells were isolated from IL15 TG/MT tumors and stimulated non-specifically with CD3/CD28 antibodies in the presence of GolgiStop, 11-13\% of these cells were found to produce IFN $(n=2)$. *Statistically significant
IL-15 TG/MT Spleen

B)

Supplemental Figure 3:IL-15 TG/MT mice were depleted with anti-NK1.1 (A) or anti-CD8 α (B/C) antibody long term starting at 4 weeks of age (representative flow plots from $n=3$ in each). (A) Long term depletion efficiently removed NK1.1 positive cells from both the spleen and tumor ($\mathrm{FMO}=$ fluoresence minus one). (B) Long term depletion efficiently removed CD8 positive cells from the spleen, but not completely in the tumor. (C) Of the CD8+CD3+ cells that remained in the tumor, the majority were NK1.1+.

Supplemental Figure 4: Adoptive transfer of CD8 T cells from IL-15 TG/MT, MT or IL-15 TG does not protect from tumor formation. CD8 T cells were isolated from the spleens of IL-15 TG/MT, MT, IL-15 TG or tumors of IL-15 TG/MT mice. 5 X10 ${ }^{6}$ spleen CD8 T cells and $1 \mathrm{X} 10^{6}$ tumor CD8 T cells were transferred into lymphopenic hosts. 24 hours later, mice were challenged with 0.5×10^{6} fresh primary MT cells subcutaneously. Resultant mice were followed for tumor formation (A) and endpoint (B). No statistically significant differences were found ($\mathrm{n}=5$ for all groups except those receiving no CD8, $\mathrm{n}=2$).

