ADDITIONAL FILE

BT-cisplatin combination-induced cytotoxicity profiles on ovarian cancer cell lines. OVCAR-3

BT was antagonistic to cisplatin action when cells were pretreated with BT followed by cisplatin addition (Fig. S1A). However, when BT and cisplatin were added simultaneously, a synergistic effect, highly dependent on drug concentrations was observed. When tested using a non-constant ratio or a constant ratio approach, synergy was observed near the IC_{50} concentration of $\mathrm{BT}(50 \mu \mathrm{M})$ when combined with lower concentrations of cisplatin (1.56-25 $\mu \mathrm{M})$. At lower concentrations of BT $(3.25 \mu \mathrm{M})$, a small additive effect was observed at lower cisplatin concentrations ($3.13-50 \mu \mathrm{M}$). As shown in Fig. S1B, at synergistic drug ratios, combination with 50 $\mu \mathrm{M}$ BT enhanced the cytotoxic potential of cisplatin by almost 20 to 77% at lower cisplatin concentrations (1.56-12.5 $\mu \mathrm{M}$). In summary, these results show that BT and cisplatin are in general antagonistic, however, these agents are synergistic within a very narrow range of ratios, with a slightly better response when both drugs are added simultaneously.

SKOV-3

When SKOV-3 cells were pretreated with BT followed by cisplatin, synergy was observed at low BT and cisplatin concentrations ($3.25 \mu \mathrm{M}$ and $1.56-6.25 \mu \mathrm{M}$, respectively) while all other concentrations resulted in antagonistic BT-cisplatin interactions (Fig. S1C). However, simultaneous addition of BT with cisplatin resulted in synergy, which was highly dependent on the concentrations of both drugs. Synergy was observed near the IC_{50} concentration of BT when combined with cisplatin at concentrations between 1.56 and $12.5 \mu \mathrm{M}$. At other concentrations of BT (3.25-25 $\mu \mathrm{M}$), a synergistic effect was observed only at low cisplatin concentration (1.56 $\mu \mathrm{M})$. As shown in Fig. S1D, at synergistic drug ratios, combination with $50 \mu \mathrm{M}$ BT enhanced the cytotoxic potential of cisplatin by almost 30 to 70% at lower cisplatin concentrations ($1.56-12.5 \mu \mathrm{M}$). Thus, BT and cisplatin act in general antagonistic, however, synergy was observed at very narrow drugs ratios with slightly better response when both drugs were added simultaneously.

Figure S1
(A)

OVCAR-3
24 Hr pretreatment with BT followed by Cisplatin (Non-Constant Ratio)

	Bithionol [$\mu \mathrm{M}$]						
Cisplatin [$\mu \mathrm{M}$]	0	3.25	6.25	12.5	25	50	100
	1.56						
	3.13						
	6.25						
	12.5						
	25						
	50						
	100						
	200						

Simultaneous treatment with BT and Cisplatin (Non-Constant Ratio)

	Bithionol $[\mu \mathrm{M}]$						
Cisplatin $[\mu \mathrm{M}]$	0	3.25	6.25	12.5	25	50	100
	1.56						
	3.13						
	6.25						
	12.5						
	25						
	50						
	100						

Simultaneous treatment with BT and Cisplatin (Constant Ratio)

$\mathrm{BT}[\mu \mathrm{M}]$	3.125	6.25	12.5	25	50	100	200	400
$\mathrm{Cis}[\mu \mathrm{M}]$	1.56	3.13	6.25	12.5	25	50	100	200
Cl								

SKOV-3
24 Hr pretreatment with BT followed by Cisplatin (Non-Constant Ratio)

	Bithionol $[\mu \mathrm{M}]$							
Cisplatin [uM]	0	3.25	6.25	12.5	25	50	100	
	1.56							
	3.13							
	6.25							
	12.5							
	25							
	50							
	100							
	200							

Simultaneous treatment with BT and Cisplatin (Non-Constant Ratio)

	Bithionol $[\mu \mathrm{M}]$						
Cisplatin $[\mu \mathrm{M}]$	0	3.25	6.25	12.5	25	50	100
	1.56						
	3.13						
	6.25						
	12.5						
	25						
	50						
	100						
	200						

Simultaneous treatment with BT and Cisplatin (Constant Ratio)

$\mathrm{BT}[\mu \mathrm{M}]$	3.125	6.25	12.5	25	50	100	200	400
$\mathrm{Cis}[\mu \mathrm{M}]$	1.56	3.13	6.25	12.5	25	50	100	200
Cl								

(B)

OVCAR-3

(D)

SKOV-3

Figure S1: Evaluation of the cytotoxic potential of BT-cisplatin combination against the ovarian cancer cell lines OVCAR-3 and SKOV-3. After determining viability (PrestoBlue assay) of cells treated with combinations of BT and cisplatin, combination index (CI) values were calculated and represented as heat maps where a drug combination is synergistic (green color) if $\mathrm{CI}<0.9$; additive (yellow color) if CI is between 0.9 and 1.0 ; and antagonistic (red color) if $\mathrm{CI}>1.0$. CI values of OVCAR-3 and SKOV-3 are shown in (\mathbf{A}) and (\mathbf{C}) respectively. (B and D) \% cytotoxicity induced BT/cisplatin combination at synergistic ratios of OVCAR-3 and SKOV-3 respectively. Percent cytotoxicity induced by BT/cisplatin combination at synergistic ratios for OVCAR-3 (B) and SKOV-3 (D) are shown in bar graphs. Comparisons between cisplatin alone-treated and combinationtreated for each cell line were performed by Student's t-test. All data were expressed as mean \pm SD of triplicate experiments. The significance level was set at p < 0.05 as indicated by asterisk (*). Human ovarian carcinoma cell lines, OVCAR-3, SKOV-3 were provided by Dr. McAsey (SIU School of Medicine, Springfield, IL). The significance level was set at $\mathrm{p}<0.05$ as indicated by asterisks (*).

