ADDITIONAL FILE

BT-cisplatin combination-induced cytotoxicity profiles on ovarian cancer cell lines.

OVCAR-3

BT was antagonistic to cisplatin action when cells were pretreated with BT followed by cisplatin addition (Fig. S1A). However, when BT and cisplatin were added simultaneously, a synergistic effect, highly dependent on drug concentrations was observed. When tested using a non-constant ratio or a constant ratio approach, synergy was observed near the IC₅₀ concentration of BT (50 μ M) when combined with lower concentrations of cisplatin (1.56 – 25 μ M). At lower concentrations of BT (3.25 μ M), a small additive effect was observed at lower cisplatin concentrations (3.13 – 50 μ M). As shown in Fig. S1B, at synergistic drug ratios, combination with 50 μ M BT enhanced the cytotoxic potential of cisplatin by almost 20 to 77% at lower cisplatin concentrations (1.56 – 12.5 μ M). In summary, these results show that BT and cisplatin are in general antagonistic, however, these agents are synergistic within a very narrow range of ratios, with a slightly better response when both drugs are added simultaneously.

SKOV-3

When SKOV-3 cells were pretreated with BT followed by cisplatin, synergy was observed at low BT and cisplatin concentrations (3.25 μ M and 1.56-6.25 μ M, respectively) while all other concentrations resulted in antagonistic BT-cisplatin interactions (Fig. S1C). However, simultaneous addition of BT with cisplatin resulted in synergy, which was highly dependent on the concentrations of both drugs. Synergy was observed near the IC₅₀ concentration of BT when combined with cisplatin at concentrations between 1.56 and 12.5 μ M. At other concentrations of BT (3.25 – 25 μ M), a synergistic effect was observed only at low cisplatin concentration (1.56 μ M). As shown in Fig. S1D, at synergistic drug ratios, combination with 50 μ M BT enhanced the cytotoxic potential of cisplatin by almost 30 to 70% at lower cisplatin concentrations (1.56 – 12.5 μ M). Thus, BT and cisplatin act in general antagonistic, however, synergy was observed at very narrow drugs ratios with slightly better response when both drugs were added simultaneously.

Figure S1

(A)

OVCAR-3

SKOV-3

24Hr pretreatment with BT followed by Cisplatin (Non-Constant Ratio)

(C)

	Bithionol [µM]										
	0	3.25	6.25	12.5	25	50	100				
	1.56										
	3.13										
	6.25										
Cisplatin [uM]	12.5										
[]	25										
	50										
	100										
	200										

Simultaneous treatment with BT and Cisplatin (Non-Constant Ratio)

ΒT [μM]	3.125	6.25	12.5	25	50	100	200	400
Cis[µM]	1.56	3.13	6.25	12.5	25	50	100	200
CI								

Figure S1: *Evaluation of the cytotoxic potential of BT-cisplatin combination against the ovarian cancer cell lines OVCAR-3 and SKOV-3.* After determining viability (PrestoBlue assay) of cells treated with combinations of BT and cisplatin, combination index (CI) values were calculated and represented as heat maps where a drug combination is synergistic (green color) if CI < 0.9; additive (yellow color) if CI is between 0.9 and 1.0; and antagonistic (red color) if CI > 1.0. CI values of OVCAR-3 and SKOV-3 are shown in (**A**) and (**C**) respectively. (**B and D**) % cytotoxicity induced BT/cisplatin combination at synergistic ratios of OVCAR-3 and SKOV-3 respectively. Percent cytotoxicity induced by BT/cisplatin combination at synergistic ratios for OVCAR-3 (**B**) and SKOV-3 (**D**) are shown in bar graphs. Comparisons between cisplatin alone-treated and combination-treated for each cell line were performed by Student's t-test. All data were expressed as mean \pm SD of triplicate experiments. The significance level was set at p < 0.05 as indicated by asterisk (*). Human ovarian carcinoma cell lines, OVCAR-3, SKOV-3 were provided by Dr. McAsey (SIU School of Medicine, Springfield, IL). The significance level was set at p < 0.05 as indicated by asterisks (*).