Simulated data

All drug response matrices we used have 100 drugs and 150 cell lines. We first embedded five true clusters in the response matrix *Rtrue* as follows: $Rtrue = UV^T$, where *U* and *V* are shown in Table S1, and their dimensions are 100×5 and 150×5 , respectively. The (x, y) -element of *Rtrue* represents activity of drug *x* to cell line *y* such as activity area, and is 0 if drug *x* is the most resistant to cell line *y*; otherwise a higher value indicates a better sensitivity of cell line *y* to drug *x*. Then Gaussian noise *E* was added to *Rtrue* with *Rnoisy=Rtrue*-(noise_level)*E, where noise_level is a value being changed from 0 to 0.5 by the interval of 0.05. Furthermore, we masked 50% of the values of the cluster and 12.5% of the rest of values for *Rnoisy*, and the resulting matrix was used as input for the drug responses.

As to drug (cell line) similarity, we first generated a true similarity matrix *Strue* so that the (i, j) element of *Strue* is 1 if d_i and d_j (or c_i and c_j) belong to the same true cluster; otherwise this value is 0. We then generated a random matrix *Srandom*, where each element of this matrix randomly takes a value between 0 and 1. We finally generated similarity matrices (for both drugs and cell lines) by *Snoisy=Strue*-(noise_level)*Srandom, where noise_level is a value being changed from 0 to 0.5 by the interval of 0.05, and the diagonal elements of *Snoisy* are forced to be 1. Figure 1S shows a simulated example with noise level = 0.2 to illustrate the efficiency of SRMF.

U						V						
Row\Col	1st	2nd	3rd	4th	5th		Row\Col	1st	2nd	3rd	4th	5th
<i>u</i> ₁ : <i>u</i> ₂₀	rand(20,1)	0	0	0	0		v_1 \vdots v_{50}	rand(50,1)	0	0	0	0
<i>u</i> ₂₁ : <i>u</i> ₄₀	0	rand(20,1)	0	0	0		v_{51} : v_{90}	0	rand(40,1)	0	0	0
u_{41} : u_{60}	0	0	rand(20,1)	0	0		$\begin{array}{c} v_{91} \\ \vdots \\ v_{120} \end{array}$	0	0	rand(30,1)	0	0
u_{61} : u_{80}	0	0	0	rand(20,1)	0		<i>v</i> ₁₂₁ : <i>v</i> ₁₄₀	0	0	0	rand(20,1)	0
$ \begin{array}{c} $	0	0	0	0	rand(20,1)		v_{141} : v_{150}	0	0	0	0	rand(10,1)

Table S1. Detailed	U and V used to	construct target c	drug response	matrix Strue	e. The function	rand(x
y) creates an $x \times j$	y dimensional ma	trix with random e	elements in the	range of (0	.4, 1).	

Figure S1. A simulated example illustrating the efficiency of SRMF. A) The target drug response matrix. B) The Gaussian noise with noise level = 0.2 is added to the target response matrix. C) For each drug cluster, 50% of values in the bicluster and 12.5% of the remaining cell lines were masked as missing data. D) The drug (cell line) similarity matrix. E) The predicted drug response matrix.