Mechanisms of action of PGC1 α in relation to colorectal cancer development: A qualitative systematic review.

Jéssica Alonso-Molero^{*1,2}, Carmen González-Donquiles¹, Tania Fernández-Villa¹, Fernanda de Souza-Teixeira^{1,3}, Laura Vilorio-Marqués¹, Antonio J. Molina¹. Senior Author: Vicente Martín^{1,4}

Supplementary material:

Table S1: Reasons for exclusion of 22 articles according to abstract and full-text

Title	Excluded by abstract
WNT11 expression is induced by estrogen- related receptor alpha and beta-catenin and acts in an autocrine manner to increase cancer cell migration.	The article mentions ERR α , which is related to PGC1 α , but it does not deal with PGC1 α itself.
Estrogen receptor-related receptor alpha (ERRalpha) and oestrogen receptors (ERalpha and ERbeta) exhibit different gene expression in human colorectal tumour progression.	The article mentions ERR α , which is related to PGC1 α , but it does not deal with PGC1 α itself.
Rapid and cost effective genotyping method for polymorphisms in PPARG, PPARGC1 and TCF7L2 genes	This article does not deal with the colorectal cancer.
NF-kappa B/PPAR gamma and/or AP-1/PPAR gamma 'on/off' switches and induction of CBP in colon adenocarcinomas: correlation with COX-2 expression	The article mentions PPARS, but does not deal with the gene of interest.
CLA and n-3 PUFA differentially modulate clinical activity and colonic PPAR-responsive gene expression in a pig model of experimental IBD	The article mentions PPARS, but does not deal with the gene of interest.
IFN-Y and TNF- α treated mesenchymal stem cells can enhance the chemotherapy resistance of colon cancer cells	The article mentions Bax and Bcl-2, which are related to PGC1 α , but does not deal with the gene of interest.
Impact of age, BMI and HbA1c levels on the genome-wide DNA methylation and mRNA expression patterns in human adipose tissue and identification of epigenetic biomarkers in blood	The article mentions various genes related to PGC1 α , but does not deal with the gene of interest.
A marker-derived gene network reveals the regulatory role of PPARGC1A, HNF4G, and FOXP3 in intramuscular fat deposition of beef cattle	This article does not deal with the colorectal cancer.
A Six Months Exercise Intervention Influences the Genome-wide DNA Methylation Pattern in Human Adipose Tissue	This article does not deal with the colorectal cancer.

Coordinate changes in histone modifications, mRNA levels, and metabolite profiles in clonal INS-1 832/13 β-cells accompany functional adaptations to lipotoxicity	This article does not deal with the colorectal cancer.
Genetic mapping of quantitative trait loci for meat quality and muscle metabolic traits in cattle	This article does not deal with the colorectal cancer.
Epigenetic silencing of peroxisome proliferator- activated receptor Y is a biomarker for colorectal cancer progression and adverse patients' outcome	The article mentions PPARS, but does not deal with the gene of interest.
A PGC-1α-O-GlcNAc transferase complex regulates FoxO transcription factor activity in response to glucose	This article does not deal with the colorectal cancer.
The functional genetic variant Arg324Gly of frizzled-related protein is associated with colorectal cancer risk	Arg324Gly is not a PGC1 α SNP.
Kinase Suppressor of Ras 1 (KSR1) Regulates PGC1α and Estrogen-Related Receptor α To Promote Oncogenic Ras-Dependent Anchorage-Independent Growth	This article does not deal with the colorectal cancer.
Involvement of mitochondria in apoptosis of cancer cells induced by photodynamic therapy	This article does not deal with the colorectal cancer or PGC1 α .
Metformin induces microRNA-34a to downregulate the Sirt1/Pgc-1 alpha/Nrf2 pathway, leading to increased susceptibility of wild-type p53 cancer cells to oxidative stress and therapeutic agents	This article does not deal with the colorectal cancer or PGC1 α .
Polymorphisms in fatty acid metabolism- related genes are associated with colorectal cancer risk	This article does not deal with PGC1 α .
Polyphenolic profile and antiproliferative activity of bioaccessible fractions of zinc- fortified fruit beverages in human colon cancer cell lines	This article does not deal with PGC1 α .
Title	Excluded by full-text
Estrogen-related receptor α (ERR α) inverse	The article mentions PGC1 α and its
agonist XCT-790 induces cell death in	relationship with cancer, but does not deal
chemotherapeutic resistant cancer cells	with colorectal cancer.
Dietary supplementation of krill oil attenuates inflammation and oxidative stress in	The article mentions PGC1 α and its relationship with ulcerative colitis, but does
experimental ulcerative colitis in rats.	not deal with colorectal cancer.
Simulated colon fiber metabolome regulates	The article mentions PGC1 α and colorectal
genes involved in cell cycle, apoptosis, and	cancer but not define a relationship between
energy metabolism in human colon cancer	them. It is more focused on $\ensuremath{PPAR\alpha}$ and other

cells.

genes.

Table S2: Full details of the key characteristics of the selected studies

Title	First Author	Year	Study population	CRC and other diseases	Demographics factors	Genes/Proteins	Reactive Oxygen Species (ROS) assessment	Primary results	Secundary results	Conclusion
Overexpression of PGCL-alpha enhances cell proliferation and tumorgenesis of HB223 cells through the upregulation of 55 and Acyl- CoA binding protein.	Sung-Won Shin	2014	Cells Lines: HEK293, HT29 y SNU-Ca, CT26	CRC	Cells were subcutaneosly injected into the bilateral flanks of 6 to 7-week-old female immunodeficient mice. En ellas se inyectaron las células transfectadas anteriores.	PGC1-α; ABCP; Sp1	Yes	 POC-1a accelerates proliferation of HBC93 and CT-26 cells. 2]Knockdown of POC1-a expression results in decreased cell proliferation of human colorectal cancer cells. 3]PGC-1a promotes the oncogenic potential of HBC933 cells. 4] PGC-1a- overxpressing HE733 cells. as decreased sensitivity to axidative stress. 	upregulation of ACBP in HEK293 cells. 6) Downregulation of ACBP leads to decreased	
PGC-1β promotes enterocyte lifespan andtumorigenesis in the intestine	Elena Bellafante	2014	Mice overexpressing PGC-1β and PGC-1β knockout mice	CRC	This study were carried out in male mice	PGC-1β, who is highly similar to PGC-1α.	Yes	 PGC-1β Is Highly Expressed in the Intestinal Epithelium and Modulates Intestinal Morphology. 2) Intestinal PGC-1β Overexpression Enhances Antioxidant Defense. 3) Intestinal PGC-1β Overexpression Promotes Intestinal Carcinogenesis. 	 PGC-1β overexpression in the intestine is able to induce mitachondrial functions and respiration. 5) Intestinal PGC-1β Ablation Decreases Antioxidant Defense and Intestinal Carcinogenesis. 	Thus, PGC-1ß seems to act as an adaptive self-point regulator, capable of providing a balance between mitochondrial activity and increased ROS production.
Mitochondria and Tumor Progression in Ulcerative Colitis	Cigdem Himmetoglu Ussakli		First patients set: 9 UC nonprogressors to CRC + 9 UC progressors to CRC + 9 UC progressors to CRC + 9 Five non-UC colon as normal controls; Second patients set: 6 UC progressors with different stages of dysplazia.	Ulcerative colitis and CRC	20 to 50 years old Controls (Mean: 15 years), 1 men y 2 women 2010 77 years old UC nonpergersser (Mean: 48.8 years), 6 men y 3 women. 50 to 70 years old UC progressor (Mean: 25 years), 7 men y yearne. 48 to 58 years old UC progressor 2 (Mean: 2.8 years), 4 men y 2 women.	CDX and PGC1-α. Telomeres length and mitochondrial DNA.	Not	 Comparison of CDX in Nondysplastic Biogoles of UC Progressors and Nonprogressors show that the tumor development could be due to a previous lower CDX levels. J Cox levels increase after the tumor development (Bimodal pattern). Mitchchondria follow the same pattern. 3) PCCI ca could be the driver of the mitochondrial changes observed. 	 Mitochondria and telomeres follow the same U-shaped pattern in tumor progression. 5/Telomeres lenght are indirectly PCIC: regulated. (This association is not clear) 	1) At the biomarker level, COX loss precedes tumor progression in UC 2) At the biological level, the loss of COX represents a reduction of the number of mitochondria in preneoplasi, which is restored in cancers. It appears to be driven by PGC1a.
PGCLa promotes tumor growth by inducing gene expression programs supporting lipogenesis.	Kavita Bhalla	2011	PGC1a -/- and PGC1a +/+ mice; Colo205 and HT29 cell line. Colo205 were subcutaneously injected to mouse.	CRC	Colon carcinogenesis was induced by injecting mice once per week with 10mg/kg ADM for 8 weeks. Mice were monitored for 25 weeks and then euthanized.	PGC1α; PGC1β; ERRα; TAG	Not	 Loss of PGC1 protects against both colon and liver tumorigenesis. 2) Overexpression PGC1a promotes tumor growth in vivo. 3) PGC1ar mediated induction of fatty acid synthesis promotes tumor growth. 	 PGC1a promotes the expression of genes driving de novo fatty acid synthesis. Although ERRa is not responsible for the effects of PGC1a on lipagenic gene expression. 5) PGC1a promotes lipagenesis. 	 Novel role for PGCIa in promoting carcinogenesis and tumor growth. 2) PGCIa coordinates the induction of a gene expression program that facilitates the conversion of glucose to fatty acids. 3) PGCIa represents a potential therapeutic target for chemopervention.
Bax is necessary for PGC1x pro-apoptotic effect in colorectal cancer cells	llenia D'Errico	2011	Bax+/- and Bax-/- HCT16 cells. This cells were subcutaneously injected to the subscapular region of an athymic mouse.	CRC	Nude mice randomly divided into two groups: Negative control and treatment group.	Bax; PGC1a	Not	1)PGC1a induces Bax activation. 2) PGC1a increases mitochondrial activity. 3) PGC1a induces apoptosis in presence of Bax, but not without Bax. 4)PGC1a inhibits tumor growth in presence of Bax.	5) In absence of Bax, PGC1a overexpression is no more able to oppose tumor growth.	 In the presence of Bax, the PGCIa-induced ROS accumulation represents one of the main apoptosis- driving factors in CRC cells: 2) PGCIa is able to induce Bax activation and translocation to mitochondria, thus leading apoptotic cascade.
PGC-1a/β upregulation is associated with Improved oxidative phosphorylation in cells harboring nonsense mtDNA mutations	Sarika Srivastava	2007	Cells lines: VACO 425 y VACO V429	CRC	VACO 425 and VACO V429 were grown in minimal essential medium supplemented with nonessential namico adds gittamine, insulin, transferrin, hydrocottisone, sodium selenite, provate, undine and fetal boxine serum (PBS).	COXI; ND5; PGC1a; PGC1β; GFP	Not	1) PGC-1α and PGC-1β are markedly upregulated in V425. 2) Oversepression of PGC-1a and PGC-1β transcriptional ocativators stimulates mitochondria respiration, at least in osteosaroma cybrid. 3) Oversepression of PGC-1a stimulates complex IV activity. 4) Oversepression of PGC-14/β transcriptional coachivators can stimulate respiration in DGPHO5 deficient cells.	5) Mitchnindral DNA muttations in V4256 in not ababilit herdigenous cell respiration despite affecting complex I and IV activities. (6) However, this mutations abolish respiration when transferred to a different nuclear badground (e.g., outeroacoma). 7) tate of respiration and complex IV activity are highly sensitive to KKI inhibition in V425. 8) Mitchondral in membrane potential and calcium buffering capacity are lowered in V425.	1)In V425 cells, the Ca2-vdspendent signaling events are active for relatively longer periods, which in turm might activate the nuclear genes (Including GGC-lat/B) involve in turner invasion and metataxis, 2) Overexpression of GGC-lat/B cancel and turner activation DXPHOS deficient cells. 3) This pathway could be explored as a therapeutic approach for the treatment of human mitochondrial diseases.
Validation of the Use of DNA Pools and PrimerExtension in Association Studies of SporadicColorectal Cancer for Selection of Candidate SNPs	Mette Gaustadnes	2006	Two pools of genomic DNA: 1) 230 patients with diagnosed sporadic CRC and 2) 540 controls	Sporadic CRC	Case pool: mean age = 57.3 years; 40% female-60% male; Caucasians. Control pool: mean age = 62.6 years; 40% female - 60% male; Caucasians.	SNPs involved in the wnt/b-catenin pathway. SNPs in other candidate genes likely to be involved in CRC (e.g. PGC1a)	Not	Results were analyzed by the χ2 test with a level of significance α= 0.05. Five SNPs were found. The SNP analysis of the (*604517) durf6515 was not reproducible, but it was always statistically significant.	 A lot of other SNPs, not interesting in this review. 2) The method based on pooled samples of DNA is a valuable screening tool for identifying candidate SNPs associated with a given phenotype. 	The results of this article allow concluded that the difference between cases and controls would be statistically significant for n=600 cases and n=600 controls.

Title	First Author	Year	Study population	CRC and other diseases (e.g. Ulcerative colitis o Chron's disease)	Demographics factors	Genes/Proteins	Reactive Oxygen Species (ROS) assessment	Primary results	Secundary results	Conclusion
SIRT1/PGC1a-Dependent Increase in Oxidative Phosphorylation Supports Chemotherapy Resistance of Colon Cancer	Thomas T.Vellinga	2015	Cell culture were obtained from human colorectal tumours or liver reception.	CRC and liver metastasies. Chemotherapy resistance.	Human colorectal tumor specimens were obtained from patients undergoing colon or liver resection for primary or metastatic adenocarrinoma. And 12-week-old male mice who were injected subcutaneously transfected cells.	Electron transport chain complex; Mitochondrial ribosomal proteins; SIRT1; PGC1α	Not	 Chemotherapy induces SIRT1 to promote caldative energy metabolism. This gene controls mitochondrial biogenesits by deacetylating and activating PGCIa. 2) SIRT1 and PGCIa protect colon cancer cells against chemotherapy. 	3)Chemotherapy of colorectal liver metastases induces changes in gene expression. 4) Genes regulating mitochondrial biogenesis and OXPHOS are upregulated in chemotherapy-exposed liver metastases. 5) Chemotherapy treatment induces oxidative energy metabolism.	Colorectal tumors shift their energy metabolism when challenged with chemotherapy. Chemotherapy induces OXPHOS in colon cancer cells via sthe SIRTI/PGC1a axis to help them survive treatment.
AMPK Promotes Aberrant PGCIβ Expression To Support Human Colon Tumor Cell Survival	Kurt W. Fisher	2015	Seven different cell lines. The most used HCT116 and HCECs as control.	CRC	in vivo and in vitro culture cells.	PGC1a; PGC1β; ERRa; KSR1; K- Ras; AMPK	Not	PGCLB is not detected in HCT116cell line. 1) PGCLB and RRB are key downtream effectors of K-Ras, KSRL, and AMPKL 2) Both AMPK 1 and K-Ras depletion decreased the protein levels of PGCLB. 3) PGCLB and ERRB are overexpressed in colon cancer and are required for colon cancer survival both who and in vitro.	4) KSR1 regulates anchorage-independent growth and tumor maintenance. 5) AMPK seems to be a functional analog of KSR1. 6) An isoform of AMPK promotes colorectal cancer cell survival.	The aberrant expression of POC1§ and ERRs persists in additional tumors with oncogenic Eas alleles will reveal the importance of these transcriptional regulators in the creation of tumor cells and the promotion of their survival. This fact could be a new therapeutic target.
Peroxisome proliferator- activated receptor- yocacituator L- (PGCLa) is a metabolic regulator of intestinal epithelial cell fate	llenia D'Errico	2011	HT29, C2C12 and 1438 cel line. IPGC1a/Apc May- mice	CRC	IPGC1a trangenic mice; IPGC1a Apoxe,- mice; CS78L/6 Apoxe,- mice.	PGCLa	Yes	Expression level of PGLIs in the instatine is higher in differentiated entercoyste tails in the proliferative compartment at the bottom of the crypts, where it has only a cattered operasion. J PGGLIs induces Mitochondral Instantal Concer Calls, SJPGCI induces Instantal Concer Calls, SJPGCI induces Approximation of the strain of the strain Mitochondral Biogenesis and Respiration in who, and suppresses Colorectal Carcingenesis	5) PGCIa Prospoptistic Effect I Lost In TATSpO Cells: (b A synthetic 5002 and Catalise Minetic LUXI3AAbilishes the PGCIa Prospoptist (Fict. 8) PGCIa-PG Mice Are Succeptible to Intestinal Tumorigenesis.	 PGCIa expression levels could influence intestinal epithelial cell fate by inducing mitochondrial-related metabolic incollications that have aspotiasi. J PGCIa overspression is alle to alimilate mitochondrial bogenesis, metabolic stativites and accumulation of ROS 3(s) indi- ROCI is alse to provem ROS homeotoxics, in normal intestine, PGCIa is not able to induce the ROS scaenerging systems.
Peroxisome Proliferator- Activated Receptor II Coactivator-Lalpha Enhances Antiproliferative Activity of S ¹ -Dexy-S- Fluorouridinein Cancer Cells through Induction of Uridine Phosphorylase	Xingxing Kong	2009	Cell lines: Colo320, HTC116, HepG2 y SK-BR- 3.	Chemotherapy in CRC and Breast cancer.	Breast cancer and colon cancer cell lines	PGC10; UPare	Not	1) PGC-1 Induces the Expression of UPase in Breast and Colon Cancer Cells. 2/PGCLa Dependent Induction of UPase Gene in Cancer Cells is Mediated by ERRa. 3) Overexpression of PGC-1 Sensitizes Cancer Cells to 5-DFUR.	4) PGC-1-induced UPase Transcription is Mediated by Binding of a Nuclear Receptor.	1) PGC La seems to be a regulator of UPase gene transcription, whose effect is mediated by RRma. 2) PGCL has an effect in absence of ERRe, suggesting the involvement of other regulatory factors. 3) in humor cells, UPase catalyzes the transformation of 5-OFUR to 5-FU, which inhibits their poliferation. In this way, PGCLa enhances the cell sensitivity to the transformation of this sensitivity to the transformation of the sensitivity to the transformation of the sensitivity to the transformation of the sensitivity to the transformation of the sensitivity to the transformation of the sensitivity to the transformation of the transform
Peroxisome proliferator- activated receptors (PPARs) and associated transcription factors in colon cancer: reducedexpression of PPARg-coactivator 1 (PGC- 1)	Jonas Feilchenfel dt	2004	17 patients with colon cancer	CRC in differents Dukes stage.	17 patients: Eleven patients were women (65%) and six patients were men [53%). Med an age were for years (range 40-80 years). Twelve patients (71%) had tumors of Dukes stage A or and only five patients (29%) had Dukes stage C.	PPARs; PGC1; RXRa	Not	 RXRa expression in tumours is similar relative to normal mucosa. 2) PGC-1 expression in the tumors was significantly decreased relative to normal mucosa. 	1]Expression levels of PPAR were correlated to Dukes stage.	1) PPARG/G may act as represent of PPAR and and PPAR traptegene expression. 2) Reduced coactivator (versi of PGC-1 are compatible with a reduced transcriptional activity of PPART and hence a reduced tumor suppressor activity. 3) Transcriptional activity of PPART may not only be decreased by mutation and the increase of the transcriptional repressor PPARG/G but also by downergulation of the coactivet PPC-1 of PPART.