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1 Supplemental Notebook 1

This is a re-analysis of mutation count by sample type (primary / relapse), tissue type (solid vs ascites) and
treatment exposure (treatment naive vs treated).

This section uses a Bayesian analysis in order to better adjust for the dramatic imbalance in groups.

1.1 Summarize data

In this analysis we will be looking at how the number of mutations & peptides (predicted neoantigens)
varies with the sample type (solid / ascites) and timing of acquisition (relapse / primary and treated /
untreated).

ggplot(md, aes(x = mutations_per_mb, fill = specific_treatment)) +
facet_wrap(~tissue_type) +
geom_histogram(position = 'dodge') +
theme_minimal()

## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
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How many observations do we have for each of these categories?

md %>%
group_by(tissue_type, treatment, timepoint) %>%
tally() %>%
tidyr::spread(key = tissue_type, value = n, fill = 0)

## Source: local data frame [3 x 4]
## Groups: treatment [2]
##
## treatment timepoint ascites solid
## * <chr> <chr> <dbl> <dbl>
## 1 chemo treated primary 0 5
## 2 chemo treated recurrence 24 6
## 3 treatment naive primary 4 75

Strikes me that the “recurrent” timepoint is problematic in this analysis, since we don’t have any un-
treated/recurent samples & so cannot separate effect of recurrence from that of treatment.

Instead, we can look at solid samples only, among those collected at the primary timepoint comparing
treated to untreated samples. My guess is, many of these might be the paired samples.

We can then include the treated / recurrence using only solid samples, although my guess is in this case we
will see a higher rate of mutations among recurrence samples than among primary/treated.

Only after these effects are well established should we turn to the ascites samples, to see if the difference
between untreated/primary & treated/relapse is consisent with that seen in solid samples.
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1.2 Restricting to primary, solid samples

We now have samples, are treatment-naive.

Let’s review how these metrics are distributed in this subset of our samples. First we note that the maximum
number of samples per donor in this subset of our data is , meaning we have no duplicate samples.

Here, looking at metrics among all primary, solid samples irrespective of treatment:

ggplot(md_primary_solid %>%
tidyr::gather(value = 'value', key = 'variable', mutations, mutations_per_mb, peptides), aes(x = value)) +

geom_density() +
theme_minimal() +
facet_wrap(~variable, scale = 'free')
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These numbers are not exactly normally-distributed.

Perhaps using a log-transformed value?

ggplot(md_primary_solid %>%
tidyr::gather(value = 'value', key = 'variable', mutations, mutations_per_mb, peptides),

aes(x = log1p(value))) +
geom_density() +
theme_minimal() +
facet_wrap(~variable, scale = 'free')
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ggplot(md_primary_solid %>%
tidyr::gather(value = 'value', key = 'variable', mutations, mutations_per_mb, peptides),

aes(x = log1p(value), fill = treatment)) +
geom_density(alpha = 0.4) +
theme_minimal() +
facet_wrap(~variable, scale = 'free')
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What is noticeable here is that, given the small number of treated samples, it is very hard to tell graphically
whether there is any difference in the two distributions.

Let’s try fitting a model to these data.

trt1 <- rstanarm::stan_glm(log1p(mutations) ~ treatment,
data = md_primary_solid,
seed = stan_seed
)

trt1

## stan_glm
## family: gaussian [identity]
## formula: log1p(mutations) ~ treatment
## ------
##
## Estimates:
## Median MAD_SD
## (Intercept) 8.7 0.2
## treatmenttreatment naive 0.2 0.2
## sigma 0.5 0.0
##
## Sample avg. posterior predictive
## distribution of y (X = xbar):
## Median MAD_SD
## mean_PPD 8.8 0.1
##
## ------
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## For info on the priors used see help('prior_summary.stanreg').

This suggests the treatment effect on number of mutations may be relatively modest, with a median effect
indicating that the average mutation count among treatment naive samples would be 20% higher than that
among chemo-treated samples (with a relatively wide posterior interval).

bayesplot::mcmc_areas(as.array(trt1), pars = 'treatmenttreatment naive')

treatmenttreatment naive
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How well do this model’s predictions match our data?

trt1.ppred <- rstanarm::predictive_interval(trt1) %>%
tbl_df(.)

trt1.median <- rstanarm::predictive_interval(trt1, 0.01) %>%
tbl_df(.) %>%
dplyr::mutate(median = (`49.5%` + `50.5%`)/2) %>%
dplyr::select(median)

md_primary_solid2 <-
md_primary_solid %>%
dplyr::bind_cols(trt1.ppred) %>%
dplyr::bind_cols(trt1.median)

ggplot(md_primary_solid2, aes(x = treatment, y = log1p(mutations))) +
geom_jitter() +
geom_errorbar(aes(x = treatment, ymin = `5%`, ymax = `95%`),

data = md_primary_solid2 %>% dplyr::distinct(treatment, .keep_all=T),
colour = 'red', alpha = 0.5)
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How well does our model recover the observed distributions of variables?

bayesplot::pp_check(trt1)
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Not bad ..

1.2.1 Try a negative-binomial model?

What if we tried a negative-binomial model instead?

trt1nb <- rstanarm::stan_glm(mutations ~ treatment,
data = md_primary_solid,
family = neg_binomial_2(),
seed = stan_seed

)
trt1nb

## stan_glm
## family: neg_binomial_2 [log]
## formula: mutations ~ treatment
## ------
##
## Estimates:
## Median MAD_SD
## (Intercept) 8.8 0.2
## treatmenttreatment naive 0.2 0.2
## reciprocal_dispersion 4.3 0.7
##
## Sample avg. posterior predictive
## distribution of y (X = xbar):
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## Median MAD_SD
## mean_PPD 7777.7 612.2
##
## ------
## For info on the priors used see help('prior_summary.stanreg').

(notice that here we have almost identical parameter estimates)

bayesplot::pp_check(trt1nb)
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Here we have a slightly better fit, but not by much. Consistent with theory, the log-transform works well as
an approximation to the ‘counting process’ at high levels of the counts.

1.2.2 Adjust for number of cycles?

Next we look at estimating the effects of number of cycles on mutation count. Sometimes adding more
information can address noise in the model, and sometimes it just .. adds noise.

trt2 <- rstanarm::stan_glm(log1p(mutations) ~ treatment + `total cycles`,
data = md_primary_solid %>%

dplyr::mutate(no_treatment = ifelse(treatment == 'treatment naive', 1, 0),
treatment = ifelse(treatment != 'treatment naive', 1, 0))

)
trt2

## stan_glm
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## family: gaussian [identity]
## formula: log1p(mutations) ~ treatment + `total cycles`
## ------
##
## Estimates:
## Median MAD_SD
## (Intercept) 8.9 0.1
## treatment 1.1 0.7
## `total cycles` -0.2 0.1
## sigma 0.5 0.0
##
## Sample avg. posterior predictive
## distribution of y (X = xbar):
## Median MAD_SD
## mean_PPD 8.8 0.1
##
## ------
## For info on the priors used see help('prior_summary.stanreg').

Let’s plot the distributions around these effects

bayesplot::mcmc_areas(as.array(trt2), pars = c('treatment', '`total cycles`'))

treatment
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The interpretation of these results would be that :

1. Samples that received treatment have higher average mutation count than samples that are treatment-
naive
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2. Among those receiving treatment, those with more cycles tended to have lower mutation count

This may or may not make biological sense (to me it feels like a stretch), and the posterior distributions of
effects are all pretty broad. So my inclination would be to judge these effects as being “within the noise”.

1.2.3 Use a varying-intercept effect?

Before moving on to include solid/relapse/treated & ascites samples, we fit the same model using a varying-
coefficient structure. We do this because this is the type of model we will fit in later iterations and so it will
be helpful to have a baseline here to compare against.

This model is structurally very similar to fitting a no-intercept model, with formula mutations ~ 0 +
treatment, which would estimate separate mean numbers of mutations among treated & naive solid primary
samples. The difference is that, in this formulation, the treatment-specific means are drawn from a higher-level
distribution of means which acts like a prior for the group-specific means, and which in effect regularizes the
treatment & non-treatment means – the group-specific means end up shrinking towards an overall inter-group
mean.

trt3 <- rstanarm::stan_glmer(log1p(mutations) ~ (1 | treatment),
data = md_primary_solid,
adapt_delta = 0.999,
seed = stan_seed
)

trt3

## stan_glmer
## family: gaussian [identity]
## formula: log1p(mutations) ~ (1 | treatment)
## ------
##
## Estimates:
## Median MAD_SD
## (Intercept) 8.8 0.2
## sigma 0.5 0.0
##
## Error terms:
## Groups Name Std.Dev.
## treatment (Intercept) 0.42
## Residual 0.48
## Num. levels: treatment 2
##
## Sample avg. posterior predictive
## distribution of y (X = xbar):
## Median MAD_SD
## mean_PPD 8.8 0.1
##
## ------
## For info on the priors used see help('prior_summary.stanreg').

The summary for this model does not include the group-specific means by default. We can, however, recover
them quite easily.
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bayesplot::mcmc_areas(as.array(trt3), regex_pars = '\\(Intercept\\) treatment\\:')

b[(Intercept) treatment:chemo_treated]

b[(Intercept) treatment:treatment_naive]

−2 −1 0 1 2

A textual summary can be accessed via summary:

summary(trt3, regex_pars = c('^b'))

##
## Model Info:
##
## function: stan_glmer
## family: gaussian [identity]
## formula: log1p(mutations) ~ (1 | treatment)
## algorithm: sampling
## priors: see help('prior_summary')
## sample: 4000 (posterior sample size)
## num obs: 80
## groups: treatment (2)
##
## Estimates:
## mean sd 2.5% 25% 50%
## b[(Intercept) treatment:chemo_treated] 0.0 0.3 -0.6 -0.1 0.0
## b[(Intercept) treatment:treatment_naive] 0.1 0.3 -0.5 0.0 0.0
## 75% 97.5%
## b[(Intercept) treatment:chemo_treated] 0.0 0.7
## b[(Intercept) treatment:treatment_naive] 0.2 0.9
##

12



## Diagnostics:
## mcse Rhat n_eff
## b[(Intercept) treatment:chemo_treated] 0.0 1.0 730
## b[(Intercept) treatment:treatment_naive] 0.0 1.0 594
##
## For each parameter, mcse is Monte Carlo standard error, n_eff is a crude measure of effective sample size, and Rhat is the potential scale reduction factor on split chains (at convergence Rhat=1).

However, in order to estimate the average difference between treated and naive samples, it is easiest to use
posterior-predicted values.

For this, we construct a hypothetical dataset containing one treated & one treatment-naive sample.

newdata <- data.frame(treatment = c('chemo_treated', 'treatment_naive'),
timepoint = c('primary', 'primary'))

ppred_newdata <- rstanarm::posterior_predict(trt3, newdata = newdata)
summary(apply(ppred_newdata, 1, diff))

## Min. 1st Qu. Median Mean 3rd Qu. Max.
## -2.43100 -0.36080 0.09884 0.10520 0.57850 2.61800

This yields the posterior-predicted distribution of the difference (on scale of log1(mutations)) between
chemo-treated & treatment-naive samples.

It’s not surprising, here, that our effect has shrunken – the mean effect of having a treatment_naive sample
is 0.12 (or 12% higher mutation count than chemo-treated samples) instead of 0.2. Our confidence intervals
around this difference is also much greater than in the previous model. However the direction of effect is
similar. Folks may reasonably disagree about which of these two results is more “correct”, but the findings
aren’t inconsistent.

At this point, we are ready to move on to a variation of this model that includes all solid samples, estimating
effects of relapse & treatment separately.

1.3 All solid tumor samples

Now we start to analyze a dataset including primary/untreated, primary/treated & relapse/treated samples.

First we note that the maximum number of samples per donor in this subset of our data is , meaning we
have a handful of duplicate samples per donor. We will adjust for this in our analysis.

1.3.1 Using a standard Bayesian glm

First we fit a standard glm without any donor-specific adjustments.

strt1 <- rstanarm::stan_glm(log1p(mutations) ~ treatment + timepoint,
data = md_solid,
adapt_delta = 0.999,
seed = stan_seed
)

strt1

## stan_glm
## family: gaussian [identity]
## formula: log1p(mutations) ~ treatment + timepoint
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## ------
##
## Estimates:
## Median MAD_SD
## (Intercept) 8.7 0.2
## treatmenttreatment naive 0.2 0.2
## timepointrecurrence 0.8 0.3
## sigma 0.5 0.0
##
## Sample avg. posterior predictive
## distribution of y (X = xbar):
## Median MAD_SD
## mean_PPD 8.9 0.1
##
## ------
## For info on the priors used see help('prior_summary.stanreg').

Here, we see a similar treatment effect as in our earlier analysis (which is encouraging), but the estimated
“recurrence” effect is somewhat higher than the treatment effect.

How well are we recovering the distribution of our log1p(mutation) count in this sample?

bayesplot::pp_check(strt1)
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Pretty well.
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1.3.2 Using a varying-intercept model

Let’s fit this model with an adjustment for within-id similarity.

strt2 <- rstanarm::stan_glmer(log1p(mutations) ~ treatment + timepoint + (1 | donor),
data = md_solid,
adapt_delta = 0.999,
iter = 5000,
seed = stan_seed
)

## Warning: There were 4 chains where the estimated Bayesian Fraction of Missing Information was low. See
## http://mc-stan.org/misc/warnings.html#bfmi-low

## Warning: Examine the pairs() plot to diagnose sampling problems

strt2

## stan_glmer
## family: gaussian [identity]
## formula: log1p(mutations) ~ treatment + timepoint + (1 | donor)
## ------
##
## Estimates:
## Median MAD_SD
## (Intercept) 8.7 0.2
## treatmenttreatment naive 0.2 0.2
## timepointrecurrence 0.5 0.3
## sigma 0.3 0.1
##
## Error terms:
## Groups Name Std.Dev.
## donor (Intercept) 0.36
## Residual 0.29
## Num. levels: donor 81
##
## Sample avg. posterior predictive
## distribution of y (X = xbar):
## Median MAD_SD
## mean_PPD 8.9 0.0
##
## ------
## For info on the priors used see help('prior_summary.stanreg').

These findings are similar to those from the earlier model which did not adjust for duplicate samples per
donor, although the effect is somewhat attenuated.

bayesplot::mcmc_areas(as.array(strt2), regex_pars = c('^treatment', '^timepoint'))
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According to this model, we have an estimated average 50% increase in mutations for relapse samples, vs
primary.

The 95% credible intervals for this increase are:

rstanarm::posterior_interval(strt2, prob = 0.95, pars = c('timepointrecurrence'))

## 2.5% 97.5%
## timepointrecurrence -0.05066051 1.125876

How much of this probability mass is < 0?

mean(sapply(as.array(strt2)[,,'timepointrecurrence'], FUN = function(x) x <= 0))

## [1] 0.0383

This number reflects the so-called ‘bayesian p-value’, IE the posterior probability of a relapse effect being <=
0. Note that this would correspond to a one-sided p-value in traditional frequentist NHT framework.

Side note: this adjustment for donor only accounts for the fact that we’d expect two samples from the same
donor to be more similar from one another than two samples from different donors. It does not estimate
“varying-coefficients”, ie relapse or treatment effects cannot vary by donor. All effects are estimated as
population averages.
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1.3.3 Using a varying-coefficient model

Next we fit a varying-coefficient model, which allows the relapse effect to vary by donor, but models those
donor-specific variances as deviations from an overall relapse effect on mutation count.

strt3 <- rstanarm::stan_glmer(log1p(mutations) ~ treatment + timepoint + (1 + timepoint | donor),
data = md_solid,
adapt_delta = 0.999,
seed = stan_seed
)

## Warning: There were 4 chains where the estimated Bayesian Fraction of Missing Information was low. See
## http://mc-stan.org/misc/warnings.html#bfmi-low

## Warning: Examine the pairs() plot to diagnose sampling problems

strt3

## stan_glmer
## family: gaussian [identity]
## formula: log1p(mutations) ~ treatment + timepoint + (1 + timepoint | donor)
## ------
##
## Estimates:
## Median MAD_SD
## (Intercept) 8.7 0.2
## treatmenttreatment naive 0.2 0.2
## timepointrecurrence 0.6 0.4
## sigma 0.3 0.2
##
## Error terms:
## Groups Name Std.Dev. Corr
## donor (Intercept) 0.33
## timepointrecurrence 0.31 -0.09
## Residual 0.32
## Num. levels: donor 81
##
## Sample avg. posterior predictive
## distribution of y (X = xbar):
## Median MAD_SD
## mean_PPD 8.9 0.0
##
## ------
## For info on the priors used see help('prior_summary.stanreg').

As in our previous examples, we can plot the posterior density of the estimated treatment & relapse effects.

bayesplot::mcmc_areas(as.array(strt3), regex_pars = c('^treatment', '^timepoint'))
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It is not surprising that these effects are similar to those estimated by the previous model, since most of our
donors have only 1 sample. But it is reassuring to know that this particular modeling choice has little impact
on our findings.

Here, giving a textual summary again

rstanarm::posterior_interval(strt3, prob = 0.95, pars = c('timepointrecurrence'))

## 2.5% 97.5%
## timepointrecurrence -0.2124145 1.256275

And, calculating the percentage of posterior density that is <= 0.

mean(sapply(as.array(strt3)[,,'timepointrecurrence'], FUN = function(x) x <= 0))

## [1] 0.06625

Finally, we can plot our posterior-predicted intervals for the three models thus far, overlaying them with the
observed data.

This is a somewhat useful way to gut-check the model parameters.

# calculating the posterior-predicted values
strt3.ppred <- rstanarm::predictive_interval(strt3) %>%

tbl_df(.)
strt3.median <- rstanarm::predictive_interval(strt3, 0.01) %>%
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tbl_df(.) %>%
dplyr::mutate(median = (`49.5%` + `50.5%`)/2) %>%
dplyr::select(median)

md_solid3 <-
md_solid %>%
dplyr::bind_cols(strt3.ppred) %>%
dplyr::bind_cols(strt3.median)

strt2.ppred <- rstanarm::predictive_interval(strt2) %>%
tbl_df(.)

strt2.median <- rstanarm::predictive_interval(strt2, 0.01) %>%
tbl_df(.) %>%
dplyr::mutate(median = (`49.5%` + `50.5%`)/2) %>%
dplyr::select(median)

md_solid2 <-
md_solid %>%
dplyr::bind_cols(strt2.ppred) %>%
dplyr::bind_cols(strt2.median)

## plotting posterior-predicted values, with observed datapoints
ggplot(md_solid3, aes(x = specific_treatment, y = log1p(mutations))) +

geom_jitter() +
geom_errorbar(aes(x = specific_treatment, ymin = `5%`, ymax = `95%`, colour = 'model: primary only'),

data = md_primary_solid2 %>% dplyr::distinct(specific_treatment, .keep_all=T),
alpha = 0.5) +

geom_errorbar(aes(x = specific_treatment, ymin = `5%`, ymax = `95%`, colour = 'model: varying-slope'),
data = md_solid3 %>% dplyr::distinct(specific_treatment, .keep_all=T),
alpha = 0.5) +

geom_errorbar(aes(x = specific_treatment, ymin = `5%`, ymax = `95%`, colour = 'model: varying-int'),
data = md_solid2 %>% dplyr::distinct(specific_treatment, .keep_all=T),
alpha = 0.5) +

theme_minimal()
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1.4 Including ascites samples

Finally we look at a model including ascites samples

atrt1 <- rstanarm::stan_glmer(log1p(mutations) ~
timepoint + treatment + (1 | donor) +
(1 + timepoint + treatment | tissue_type),

data = md,
seed = stan_seed,
adapt_delta = 0.999,
iter = 4000
)

## Warning: There were 5 divergent transitions after warmup. Increasing adapt_delta above 0.999 may help. See
## http://mc-stan.org/misc/warnings.html#divergent-transitions-after-warmup

## Warning: There were 4 chains where the estimated Bayesian Fraction of Missing Information was low. See
## http://mc-stan.org/misc/warnings.html#bfmi-low

## Warning: Examine the pairs() plot to diagnose sampling problems

atrt1

## stan_glmer
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## family: gaussian [identity]
## formula: log1p(mutations) ~ timepoint + treatment + (1 | donor) + (1 +
## timepoint + treatment | tissue_type)
## ------
##
## Estimates:
## Median MAD_SD
## (Intercept) 8.7 0.2
## timepointrecurrence 0.6 0.2
## treatmenttreatment naive 0.2 0.2
## sigma 0.2 0.0
##
## Error terms:
## Groups Name Std.Dev. Corr
## donor (Intercept) 0.40
## tissue_type (Intercept) 0.15
## timepointrecurrence 0.14 -0.03
## treatmenttreatment naive 0.14 -0.03 0.08
## Residual 0.20
## Num. levels: donor 92, tissue_type 2
##
## Sample avg. posterior predictive
## distribution of y (X = xbar):
## Median MAD_SD
## mean_PPD 9.0 0.0
##
## ------
## For info on the priors used see help('prior_summary.stanreg').

It’s worth noting that this model recovers the distribution of our original data pretty well.

bayesplot::pp_check(atrt1)
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And, samples efficiently

bayesplot::mcmc_trace(as.array(atrt1), regex_pars = c('^treatment', '^timepoint'), facet_args = list(ncol = 1))
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This model includes an overall estimate for treatment & timepoint effects, from which tissue-type-specific
coeffients are drawn.

Here are the overall estimated effects.

bayesplot::mcmc_areas(as.array(atrt1), regex_pars = c('^treatment', '^timepoint'))
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Again, they are directionally similar to the effects estimated in our subset analyses.

Let’s compare the numerical summaries:

rstanarm::posterior_interval(atrt1, prob = 0.95, regex_pars = c('^timepoint', '^treatment'))

## 2.5% 97.5%
## timepointrecurrence 0.1147481 1.062608
## treatmenttreatment naive -0.2621648 0.631993

The estimate for recurrent samples is higher in this model than was estimated among solid samples only.

rstanarm::posterior_interval(strt2, prob = 0.95, regex_pars = c('^timepoint', '^treatment'))

## 2.5% 97.5%
## timepointrecurrence -0.05066051 1.1258756
## treatmenttreatment naive -0.25801920 0.5895171

How much of this probability mass is < 0?

mean(sapply(as.array(atrt1)[,,'timepointrecurrence'], FUN = function(x) x <= 0))

## [1] 0.010625

Let’s look at the estimates per tissue type.
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bayesplot::mcmc_areas(as.array(atrt1), regex_pars = c('^b\\[timepoint'))

b[timepointrecurrence tissue_type:ascites]

b[timepointrecurrence tissue_type:solid]

−1 0 1

Interesting that, in this model, there is not a lot of variance of effects by tissue type.

Same goes for the treatment effect.

bayesplot::mcmc_areas(as.array(atrt1), regex_pars = c('^b\\[treatment'))
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b[treatmenttreatment naive tissue_type:ascites]
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This could be due to a lack of sufficient data by which to estimate the variance, thus causing the model to
fall back on default weakly informative priors which assume little variance by tissue type.

Let’s now summarize our posterior-predicted values as we did in earlier models.

atrt1.ppred <- rstanarm::predictive_interval(atrt1) %>%
tbl_df(.)

atrt1.median <- rstanarm::predictive_interval(atrt1, 0.01) %>%
tbl_df(.) %>%
dplyr::mutate(median = (`49.5%` + `50.5%`)/2) %>%
dplyr::select(median)

md1 <-
md %>%
dplyr::bind_cols(atrt1.ppred) %>%
dplyr::bind_cols(atrt1.median)

## plotting posterior-predicted values, with observed datapoints
ggplot(md1, aes(x = specific_treatment, y = log1p(mutations))) +

geom_jitter() +
facet_wrap(~tissue_type) +
geom_errorbar(aes(x = specific_treatment, ymin = `5%`, ymax = `95%`, colour = 'model: primary only'),

data = md_primary_solid2 %>% dplyr::distinct(specific_treatment, .keep_all=T),
alpha = 0.5) +

geom_errorbar(aes(x = specific_treatment, ymin = `5%`, ymax = `95%`, colour = 'model: primary solid'),
data = md_solid2 %>% dplyr::distinct(specific_treatment, .keep_all=T),
alpha = 0.5) +
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geom_errorbar(aes(x = specific_treatment, ymin = `5%`, ymax = `95%`, colour = 'model: all samples'),
data = md1 %>% dplyr::distinct(specific_treatment, tissue_type, .keep_all=T),
alpha = 0.5) +

theme_minimal()
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Strange how, with each additional sample type added to the model, the estimated mean primary/treated
log1p(mutation) count gets lower.

1.4.1 Removing treatment from the model

What happens if we remove treatment from the model, and instead compare all relapse vs all primary (treated
+ untreated) samples?

atrt2 <- rstanarm::stan_glmer(log1p(mutations) ~
timepoint + (1 | donor) +
(1 + timepoint | tissue_type),

data = md,
seed = stan_seed,
adapt_delta = 0.999,
iter = 4000
)

## Warning: There were 1 divergent transitions after warmup. Increasing adapt_delta above 0.999 may help. See
## http://mc-stan.org/misc/warnings.html#divergent-transitions-after-warmup

## Warning: There were 4 chains where the estimated Bayesian Fraction of Missing Information was low. See
## http://mc-stan.org/misc/warnings.html#bfmi-low

27



## Warning: Examine the pairs() plot to diagnose sampling problems

atrt2

## stan_glmer
## family: gaussian [identity]
## formula: log1p(mutations) ~ timepoint + (1 | donor) + (1 + timepoint |
## tissue_type)
## ------
##
## Estimates:
## Median MAD_SD
## (Intercept) 8.9 0.1
## timepointrecurrence 0.4 0.1
## sigma 0.2 0.0
##
## Error terms:
## Groups Name Std.Dev. Corr
## donor (Intercept) 0.40
## tissue_type (Intercept) 0.18
## timepointrecurrence 0.17 0.03
## Residual 0.20
## Num. levels: donor 92, tissue_type 2
##
## Sample avg. posterior predictive
## distribution of y (X = xbar):
## Median MAD_SD
## mean_PPD 9.0 0.0
##
## ------
## For info on the priors used see help('prior_summary.stanreg').

atrt2.ppred <- rstanarm::predictive_interval(atrt2) %>%
tbl_df(.)

atrt2.median <- rstanarm::predictive_interval(atrt2, 0.01) %>%
tbl_df(.) %>%
dplyr::mutate(median = (`49.5%` + `50.5%`)/2) %>%
dplyr::select(median)

md2 <-
md %>%
dplyr::bind_cols(atrt2.ppred) %>%
dplyr::bind_cols(atrt2.median)

## plotting posterior-predicted values, with observed datapoints
ggplot(md2, aes(x = specific_treatment, y = log1p(mutations))) +

geom_jitter() +
facet_wrap(~tissue_type) +
geom_errorbar(aes(x = specific_treatment, ymin = `5%`, ymax = `95%`, colour = 'model: all samples'),

data = md1 %>% dplyr::distinct(specific_treatment, tissue_type, .keep_all=T),
alpha = 0.5) +

geom_errorbar(aes(x = specific_treatment, ymin = `5%`, ymax = `95%`, colour = 'model: recurrent only'),
data = md2 %>% dplyr::distinct(specific_treatment, tissue_type, .keep_all=T),
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alpha = 0.5) +
theme_minimal()
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The only explanation for this must be that the scenarios with multiple samples per donor must have
exaggerated the primary/treated vs primary/untreated effects in this model.

What is a numerical summary of this recurrence effect, in a univariate model adjusting only for multiple
samples per donor & tissue type?

rstanarm::posterior_interval(atrt2, prob = 0.95, regex_pars = c('^timepoint'))

## 2.5% 97.5%
## timepointrecurrence 0.08891223 0.6694402

How much of this probability mass is < 0?

mean(sapply(as.array(atrt2)[,,'timepointrecurrence'], FUN = function(x) x <= 0))

## [1] 0.01225

1.5 Analyzing peptides

1.5.1 Among solid samples
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f1 <- rstanarm::stan_glmer(log1p(peptides) ~
timepoint + treatment + (1 | donor),

data = md_solid,
seed = stan_seed,
adapt_delta = 0.999,
iter = 4000
)

## Warning: There were 4 chains where the estimated Bayesian Fraction of Missing Information was low. See
## http://mc-stan.org/misc/warnings.html#bfmi-low

## Warning: Examine the pairs() plot to diagnose sampling problems

f1

## stan_glmer
## family: gaussian [identity]
## formula: log1p(peptides) ~ timepoint + treatment + (1 | donor)
## ------
##
## Estimates:
## Median MAD_SD
## (Intercept) 4.7 0.3
## timepointrecurrence 0.4 0.4
## treatmenttreatment naive 0.1 0.3
## sigma 0.3 0.2
##
## Error terms:
## Groups Name Std.Dev.
## donor (Intercept) 0.57
## Residual 0.36
## Num. levels: donor 81
##
## Sample avg. posterior predictive
## distribution of y (X = xbar):
## Median MAD_SD
## mean_PPD 4.9 0.0
##
## ------
## For info on the priors used see help('prior_summary.stanreg').

mean(sapply(as.array(f1)[,,'timepointrecurrence'], FUN = function(x) x <= 0))

## [1] 0.131875

rstanarm::posterior_interval(f1, prob = 0.95, regex_pars = c('^timepoint'))

## 2.5% 97.5%
## timepointrecurrence -0.3180513 1.37191
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1.5.2 Among all samples

f2 <- rstanarm::stan_glmer(log1p(peptides) ~
timepoint + treatment + (1 | donor) +
(1 + timepoint | tissue_type),

data = md,
seed = stan_seed,
adapt_delta = 0.999,
iter = 4000
)

## Warning: There were 1 divergent transitions after warmup. Increasing adapt_delta above 0.999 may help. See
## http://mc-stan.org/misc/warnings.html#divergent-transitions-after-warmup

## Warning: There were 4 chains where the estimated Bayesian Fraction of Missing Information was low. See
## http://mc-stan.org/misc/warnings.html#bfmi-low

## Warning: Examine the pairs() plot to diagnose sampling problems

f2

## stan_glmer
## family: gaussian [identity]
## formula: log1p(peptides) ~ timepoint + treatment + (1 | donor) + (1 +
## timepoint | tissue_type)
## ------
##
## Estimates:
## Median MAD_SD
## (Intercept) 4.7 0.3
## timepointrecurrence 0.5 0.3
## treatmenttreatment naive 0.1 0.3
## sigma 0.2 0.0
##
## Error terms:
## Groups Name Std.Dev. Corr
## donor (Intercept) 0.62
## tissue_type (Intercept) 0.19
## timepointrecurrence 0.19 -0.04
## Residual 0.24
## Num. levels: donor 92, tissue_type 2
##
## Sample avg. posterior predictive
## distribution of y (X = xbar):
## Median MAD_SD
## mean_PPD 5.0 0.0
##
## ------
## For info on the priors used see help('prior_summary.stanreg').
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mean(sapply(as.array(f2)[,,'timepointrecurrence'], FUN = function(x) x <= 0))

## [1] 0.086125

rstanarm::posterior_interval(f2, prob = 0.95, regex_pars = c('^timepoint'))

## 2.5% 97.5%
## timepointrecurrence -0.2184951 1.098158

1.5.3 Plot predicted values

f1.ppred <- rstanarm::predictive_interval(f1) %>%
tbl_df(.)

f2.ppred <- rstanarm::predictive_interval(f2) %>%
tbl_df(.)

f1.md <-
md_solid %>%
dplyr::bind_cols(f1.ppred)

f2.md <-
md %>%
dplyr::bind_cols(f2.ppred)

## plotting posterior-predicted values, with observed datapoints
ggplot(md, aes(x = specific_treatment, y = log1p(peptides))) +

geom_jitter() +
facet_wrap(~tissue_type) +
geom_errorbar(aes(x = specific_treatment, ymin = `5%`, ymax = `95%`, colour = 'model: solid samples'),

data = f1.md %>% dplyr::distinct(specific_treatment, tissue_type, .keep_all=T),
alpha = 0.5) +

geom_errorbar(aes(x = specific_treatment, ymin = `5%`, ymax = `95%`, colour = 'model: all samples'),
data = f2.md %>% dplyr::distinct(specific_treatment, tissue_type, .keep_all=T),
alpha = 0.5) +

theme_minimal()
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