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Hierarchical Clustering

Clustering is an unsupervised machine learning task to classify samples of a population into homogeneous subsets, or
clusters, which correspond to subpopulation structures in a dataset'. Hierarchical clustering is a popular technique that
creates clusters with a predetermined ordering (hierarchy), and we selected the agglomerative (bottom-up) algorithm.
This method, starts by assigning each sample to its own cluster. Then, it computes a similarity score (distance) between
each of the pairwise samples, and join the two most similar ones into a larger cluster. The algorithm continues to

recursively aggregate clusters until all samples have been added to the hierarchy.

Hierarchical clustering is dependent of being able to calculate distance matrix between each sample, given a distance
function. The matrix gets continuously updated to display distances between clusters. The hierarchical clustering can
be visualized using a dendrogram, a highly informative description of the clustering as a binary tree structure. Figure
1 shows the steps that we took from recording time-to-event data, to creating distance a matrix of pairwise samples,

to creating a hierarchical clustering dendrogram.
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Figure 1. Diagram representing steps needed from data to clustering

Pairwise distance scoring (d). We selected an Euclidean distance, which calculates the square root of the sum of the

square difference between two vectors (x;, x2). The vectors represent the time-to-event matrix collected from the
medical records. The main manuscript shows a list of variables (in Table 1) that were recorded, and how many days
passed for that event to occur, relative to the first day at the hospital (day 0). The order in which events are recorded
in time-to-event matrix does not affect the calculation of the Euclidean distance, given that the pairwise difference at

each event is squared independently, and then summed up (see Equations 1).



Eq. 1
d(xll x2) =

Figure 2 shows an example of two samples (Patient 1 and 2), with its corresponding time-to-event feature vector in
days. The pairwise distance calculation between these two patients, using the Euclidean distance, can be seen in
Equations 2 and 3. The distance (d) between patient 1 (p/) and patient 2 (p2) is computed by having the squared
difference between each feature list of patient 1 (f;) and the features for patient 2 (g:).

feaures of Patient 1

Patient 1 L 3 7 44 37 21 14 | 659 ? 7 14 2 58 58 ? 23 ? 128 | 128 | 692 | 692
Patient 2 1 d 14 18 3 17 156 | 69 ? B] 156 | 172 17 17 | 180 156 ? 203 | 203 | 302 @ 484

gi = feaures of Patient 2

Figure 2. Day-to-event matrix example

d(p1,p2) = \/(f1 -9+ (2 —g2)* + ..+ (fu — gn)? Eq.2
d(p1,p2) = /(1 =12 + (3 —3)2 + ...+ (692 — 595)2 Eq.3

In the previous calculation, there is a need to include values in the feature space. Our recorded data has missing values
which we assumed to be missing not at random (MNAR). For example, a given patient might have had a lumpectomy
done, while another patient might have had a mastectomy (or both). If the information was missing from the record,
we assumed that the reason that it was missing was not at random. Instead, the missing information was missing
because the patient did not have the procedure done. Typically, the way to deal with this MNAR property is to assign
a missing value or missing category that represents the fact that the element is missing. In our case, we selected a large

negative number given our day-to-event values, in our case -1,000.

We did not consider the missing values to be missing at random (MAR) or missing completely at random (MCAR)
because of the nature of the procedures. Typically, the way to deal with those missing values would have been to
delete rows or columns from the analysis (in our case deleting the entire matrix); performing a partial analysis
(subsampling); replacing missing values with means or other imputation methods. However, these interpretations

would have introduced additional error to our cohort analysis.

Linkage (L) distance between clusters (r, s). We selected the complete linkage method, which calculates the distance

(D) between the two furthest points in both clusters, as seen in Equation 4. Other popular linkage methods that could
be used include single (distance between closest points), average (average distance between all points in both clusters);

centroid, etc. We did not investigated these different methods.



Complete Linkage(r,s) = max (D(xn.,xsj)) Eq. 4

Figure 3 shows the time in which each event occurred for each patient is measured using information found in their
medical record (in days, positive). To be able to create a dissimilarity matrix to calculate distance between patients,
all missing values were assigned a negative value of -1,000. Three main groups of patients (or clusters) were
identified in this graph. This figure does not provide a context for the ordering in which events occurred, but it can
still help to provide information about patients with similar trajectories. The dendrograms was created following the

hierarchical clustering approach described earlier.
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Figure 3. Heatmap of time-to-event with patient clustering.

Technology. We used the R programming language version 3.3.2 under a 64-bit Unix platform (Apple®). Our
visualization monitoring tool can be downloaded from our Github repository (https://github.com/bustamante-
lab/patientJourney). The script that we used for the cluster analysis used the package ‘ComplexHeatmap’? version

1.18.1 from the Bioconductor repository release 3.7, as shown in Code 1.

Heatmap(y,
name ="Number of days", Code 1

col = colorRamp2(c(-1000, -500, O, 500, 1000),
c("#£0£9e8", "#baedbc", "#7bcccd", "#43a2ca", "#0868ac")),
km = 3,
clustering_distance_rows = "euclidean",
clustering_method_rows = "complete",
clustering_distance_columns = "euclidean",
clustering_method columns = "complete",
row_dend_width = unit(3, "cm"),
column_dend_height = unit(2, "cm"),
rect_gp = gpar(col = "gray", lty = 1, 1lwd = 0.2),
gap = unit(5, "mm")
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