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1 Problem Statement

Let N be the total number of patients involved in the clinical trial, and D the
number of observed variables per patient, including all biomarker values. Let X
be the N ×D data matrix gathering all available information for each patient
row-wise. Such matrix might be incomplete, noisy and very heterogeneous, i.e.,
columns of X (screened variables) might correspond to di�erent types of data,
including continuous, positive real-valued, categorical, ordinal or count data.
Among the N patients, we count Np patients in the placebo arm and Nt patients
in the treatment arm. Let R = {rn}n=1...N be a binary drug identi�er vector
which takes non-zero values for patients belonging to the treatment arm, e.g.,
rn = 1, and zero values for patients belonging to the placebo arm. Among the
D dimensions, we have a variable d∗ that captures how well patients are doing,
e.g., time of Progression Free Survival (PFS). In such scenario, our objective
is to discover prognostic and predictive biomarkers with respect to d∗, i.e.,
prognostic variables help us predict the natural evolution of patients regardless
of the treatment, while predictive variables allow us to anticipate patient drug
responses.

2 Probabilistic Model

General Latent Feature Model In order to analyze the data, we resort to
a latent feature model, an unsupervised approach that models the probability
of all available data p(X) jointly, using a set of latent features [6]. Each latent
feature captures common correlation patterns among the dimensions, and the
objective is to learn the most probable set of such latent features1. Figure 1
illustrates the idea underlying a latent feature model. X can be decomposed
into the product of two matrices that should be learned from data: a feature-
activation matrix Z and a dictionary matrix B. Each element xnd ∈ X results
from a linear combination ofK feature elements Bkd, i.e., xnd corresponds to the
realization of a random variable following the probability distribution f(ZnBd),
where Zn is the n-th row of Z and Bd is the d-th column of B.

In our particular case, we use the General Latent Feature Model (GLFM)
�rst introduced in [8] and further described in [7, 9], which improves upon clas-
sical latent factor models in three aspects. First, it is a Bayesian non-parametric

1More precisely, the objective is to learn a posterior distribution for each latent feature.
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Figure 1: Illustration of the matrix factorization scheme. Z is the feature-
activation matrix, B is the dictionary matrix, and f is the model likelihood
which depends on the type of data.

model where the number of latent features is also learned from data [2, 3]. In
other words, the model assumes an a priori unbounded number K of latent fea-
tures, usually denoted by K → ∞, which is an useful property, given that the
number of correlation patterns to be discovered is generally not known before-
hand.

Second, the GLFM can handle heterogeneous datasets and missing obser-
vations straightforwardly2. This comes handy to deal with clinical trial data,
where observations for each patient are typically diverse in nature, and miss-
ing values occur frequently (e.g., not all patients might get the same tests run,
others might drop out from the study at some point, etc).

The third advantage of the GLFM is that it allows for a partition of the
patients in di�erent sub-populations. The model assumes a binary feature-
activation matrix Z ∈ {0, 1}N×K , which admits an easy interpretation in which
each latent feature can be either active or inactive for each patient. Patient sub-
populations can then be identi�ed by gathering all patients that have the same
set of active features. Within the Bayesian framework, the GLFM assumes a
Gaussian prior for each element of B, and it resorts to the Indian Bu�et Process
(IBP) as a prior for the feature-activation matrix Z [8].

Indian Bu�et Process The IBP is a stochastic process which de�nes a prob-
ability distribution over binary matrices with a �nite number of rows and un-
bounded number of columns [3]. It is often illustrated using a culinary metaphor
that gives the name to the process. Imagine an Indian restaurant whose bu�et
consists of in�nitely many dishes arranged in a line. N customers enter the
restaurant sequentially. The �rst customer starts at the left of the bu�et and
takes a serving from each dish, stopping after a Poisson(α) number of dishes,
as his plate becomes overburdened. The n-th customer moves along the bu�et
and samples dishes in proportion to their popularity, serving himself with prob-
ability mk

n , where mk is the number of previous customers who have sampled
dish k. Having reached the end of all previously sampled dishes, the n-th cus-
tomer then tries a Poisson(αn ) number of new dishes. In our case, each customer

2In the GLFM, the likelihood f will vary column-wise depending on the type of data.

2



corresponds to a patient, and each dish corresponds to a certain latent feature
or condition that can be active or inactive for each patient.

Case-control Indian Bu�et Process In order to deal with the small sample-
size scenario typical from clinical trials, we adapt the IBP in order to share
information between patients in the placebo and treatment arm. In particular,
we allow for two types of latent features: global features and treatment-speci�c
features. Global features are learned from patients in the placebo arm, and can
be active for any patient, capturing general patterns in the patient population
regardless of nay treatment. In contrast, drug-speci�c features are learned from
treated patients, and can only be active for patients in the treatment arm, cap-
turing correlations linked to the e�ect of the drug. We call this extension the
Case-control Indian Bu�et Process (C-IBP).

The learning algorithm to train the C-IBP model can be easily described as
a two-step procedure directly based on the inference of GLFMs [8]. We �rst
learn the global features by training the GLFM with patients belonging to the
placebo arm exclusively3. Next, we learn the drug-speci�c features based on
patients in the treatment arm. This is performed by training the GLFM model
with the whole patient population and imposing the constraints listed in Alg. 1.
Note that the treatment-speci�c features are always inactive for patients in the
placebo arm, which allows to completely isolate the e�ect of the drug. Alg. 1
describes this procedure. Code to train the C-IBP model can be found publicly
available online at the authors webpage.

Algorithm 1 Inference procedure for the C-IBP.

1: Train a GLFM using patients from the placebo arm only. We thus learn a
set of global features, as well as the feature assignments for patients in the
placebo arm. Inference is fully described in [8].

2: Train a GLFM using all patients. Inference also follows from [8], combined
with the additional three constraints:

(i) global features are kept �xed to the values learned in previous stage.

(ii) feature assignments for patients in the placebo arm are initialized to
their value in previous stage.

(iii) treatment-speci�c features are forced to be inactive for all patients
in the placebo arm, i.e., treatment-speci�c features are learned solely
based on patients belonging to the treatment arm.

3Code for the GLFM can be found publicly available in matlab, R, and python at:
https://github.com/ivaleraM/GLFM.
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3 Statistical Methodology

Once the model has been trained (samples from an approximate posterior dis-
tribution can be drawn), we proceed with a classical frequentist approach4 to
identify statistically signi�cant prognostic and predictive biomarkers. The whole
procedure is summarized in Algorithm 2. First, we take M posterior samples
from the posterior distribution of Z. For each sample, patients that have the
same activation pattern of features can be grouped together in the same sub-
population. For instance, subpopulation (1001) refers to all patients having the
�rst and forth feature active. Let P refer to the total number of inferred sub-
populations across the M posterior samples. By considering multiple posterior
samples, we obtain slightly di�erent partitions of patients in subpopulations.
This can be seen as performing soft-clustering of patients, i.e., patients that are
in-between subgroups might be assigned to di�erent subpopulations in di�erent
posterior samples. Thus, the method is more robust against model inaccuracies
at clustering patients. This is an important bene�t of Bayesian modeling in
general.

Next, in order to also make our method robust against outliers (patients
with extreme biomarker values), we perform bootstrapping L times, for each
subpopulation and posterior sample. Bootstrapping relies on random sampling
with replacement. It is a technique used for computing robust estimators against
outliers by sampling from an approximating distribution, which is particularly
useful for hypothesis testing when the model assumptions are in doubt or un-
known [10]. The standard bootstrapping approach relies on the construction
of an estimator for hypothesis testing based on a number L of resamples with
replacement of the observed dataset (and of equal size to the observed dataset),
i.e., sampling with replacement from the empirical distribution of the observed
data.

Given M posterior samples and L bootstrapping instances for each sample,
we end up with ML di�erent subpopulation instances. Measures of e�ect size
(quantitative measure of the di�erence between two subpopulations) and statis-
tical signi�cance can be computed for each instance and then averaged across
them, so that partition inaccuracies and outlier e�ects are mitigated. In the
described algorithm, we suggest to compare each possible pair of subpopula-
tions,5 but we might want to focus only on the biggest communities or speci�c
subpopulations of interest to reduce computational cost. Let Q be the total
number of considered comparisons between subpopulations. In our particular
case, Q = P · (P − 1)/2 as we consider each pairwise comparison among the
P subpopulations. Let i(q) and j(q) refer to the set of subpopulation indexes
corresponding to comparison q, e.g., i(q) = 4 and j(q) = {1, 2, 3} corresponds
to the comparison of subpopulation 4 against subpopulations 1, 2, and 3 aggre-

4Although Bayesian approaches to quantify statistical signi�cance exist, such as posterior
predictive checks or Bayesian factors, classical statistics predominate in the bio-medical �eld.

5Other comparison schemes are possible, such as a leave-one-out strategy consisting in the
comparison of each individual subpopulation against the rest. Note that as the number of
comparisons increase, the correction for multiple hypothesis testing shall be stronger.
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gated. In the following, we will describe how to compute the Q×D e�ect size
and statistical signi�cance matrices.

Algorithm 2 Statistical approach for biomarker discovery (post-processing).

Input: M posterior samples from Z and W, list of P subpopulations, and Q
comparisons

1: for m = 1, . . . ,M do

2: bootstrap for each subpopulation L times
3: end for

4: for q = 1, . . . , Q do

5: choose subpopulations Gi(q) and Gj(q)

6: compute e�ect size according to Eq. 1, 2, and 3.
7: compute statistical signi�cance (p-value) according to the Mann-Whitney

test for continuous variables and Fisher test for discrete variables, adjust-
ing for multiple hypothesis testing [1]

8: end for

Output: e�ect size matrix ∆ and signi�cance matrix Υ, both of dimensions
Q×D

E�ect size. For each comparison q and dimension d, we compute the e�ect
size ∆qd as:

∆qd = Em,l [δqd(m, l)] , (1)

where δqd is an M × L matrix of relative e�ect sizes for each posterior sam-
ple m and bootstrap iteration l. The expectation is done across all posterior
samples and bootstrapping iterations, which are equally probable. In the case
of continuous variables, we de�ne

δqd(m, l) = log2

µd

(
Gi(q)ml

)
µd

(
Gj(q)ml

)
 , (2)

where Gi(q)ml and Gj(q)ml refer to subpopulations i(q) and j(q) in the posterior sam-
plem and bootstrap iteration l, and µd(G) is the mean value of variable d within
a given subpopulation G. Taking the logarithm facilitates interpretation, such
that an increase or decrease ratio has the same scale: for instance, δqd(m, l) = 0
means that variable d has exactly the same averaged value in both subpopula-
tions, δqd(m, l) = +1 means that variable d is twice higher in subpopulation i,
and δqd(m, l) = −2 means that variable d is four times smaller in subpopulation

Gi(q)ml with respect to subpopulation Gj(q)ml . In the case of a discrete variable d,
we check for mean di�erences, i.e.,

δqd(m, l) = µd(Gi(q)ml )− µd(Gj(q)ml ). (3)

Note that we de�ne di�erent measures for continuous and discrete variables as
the dynamic range of continuous variables is generally much higher, making the
logarithmic scale more appropriate.
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Statistical signi�cance. To measure how signi�cant an e�ect size δqd(m, l)
is, for each posterior samplem and bootstrap instance l, we compute a statistical
signi�cance value υqd(m, l) as the p-value resulting from a certain two-sample
test. In general, selecting the most appropriate statistical test in hypothesis
testing is a challenging task [4, 5]. Here, we opt for one statistical test for
all continuous variables and another one for discrete variables for simplicity,
although more sophisticated strategies could certainly be investigated. We use
the Mann-Whitney test for continuous variables and the Fisher test for discrete
variables. The Mann-Whitney test is a general nonparametric statistical test to
check whether the distribution of both populations are equal without requiring
any normality assumption. The Fisher test is a standard test for categorical
variables [10]. We de�ne the Q×D matrix of statistical signi�cance Υ, for each
comparison q and biomarker d as the median p-value across the M samples and
L bootstrapping instances:

Υqd = medianm,l [υqd(m, l)] , (4)

where υqd denote the M × L matrix of statistical signi�cance values υqd(m, l)
for each posterior sample m and bootstrapping instance l. Finally, we follow the
Benjamini Hochberg procedure for multiple hypothesis testing to adjust the sta-
tistical signi�cance threshold αs such that a certain false discovery rate is guar-
anteed [1]. A biomarker d is said to be statistically signi�cant for comparison
q if its signi�cance value Υqd (the median p-value across posterior samples and
bootstrapping instances) is smaller than the adjusted threshold, i.e., Υqd < αs.
Figure 3 illustrates the whole pipeline used in this paper.
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