
Supplementary information for:

Stochastic modelling of tyrosine kinase inhibitor rotation therapy in

chronic myeloid leukaemia

1 Computing reproduction rates from PSSM data

CML cells depend on the ability of Abl to catalyse the phosphorylation of downstream effectors and thereby
promote tumour progression. It has been shown that mutants that lead to a higher catalytic efficiency
are also associated with higher growth rates [1]. Under the assumption that enzymes evolve for catalytic
efficiency [2], we can estimate the effect of mutating specific residues in the enzyme by how conserved they are
throughout evolution, assuming that any such changes do not affect the specificity of the enzyme. Positions
specific scoring matrices (PSSMs) list a log2-odds chance of finding a specific residue at a specific position in
a protein. Using a PSSM derived from homological proteins in evolutionarily distant relatives, and assuming
that the frequency with which specific mutations are found reflects their effects on the individuals fitness it
becomes possible to find the reproduction rate these mutants would need to eventually establish the same
frequency in a large population under our model.

Forgoing normalization, the expected population size of a length 1 protein is simply

2a

given PSSM score a. We can ignore normalization, since the expected size is measured in comparison to
expected sizes of all other amino acid variants at that position. For a full protein, the expected population
size becomes

p̂i =
∏
k

2ak

multiplying over every position k in the protein specified by an amino-acid sequence i. This assumes that the
effects of all changes are independent which, while obviously false, is justifiable assuming that larger more
unpredictable exceptions usually require several mutations. A single mutation is independent by definition,
and double or (rare) triple mutations are still small enough changes to the protein that they might be
approximately independent most of the time. For higher order mutations the assumption almost surely
breaks down more frequently, but these are practically irrelevant so the inaccuracies have no actual effect
on clinically relevant simulations where more than a double mutant is unlikely and inadvisable. We can
then find model parameters that create the same expected population size. In our model, the changes in
population of every cell phenotype is described by the equation

Ni(t) = [1 + si(1− µi)](1− q(t− 1))Ni(t− 1) +
∑

j∈nni

sjµεjiNj(t− 1)[1− q(t− 1)]

which has been explained in more detail in the main article. From this equation we can determine the
reproduction rates si that result in predetermined average population sizes for all genotypes, p̂i by an
iterative calculation

s
(0)
i = 0

s
(n)
i =

q

1− µi
−
∑

j∈nni

s
(n−1)
j

εji
(1− εji)

p̂j
p̂i
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until s
(n)
i converges. Convergence happens relatively quickly (n ≈ 20 is enough for double precision) for most

inputs (although convergence is not guaranteed). The naive implementation calculating every si separately
quickly runs into scaling issues, as branching of the nearest neighbours creates a large dependency tree.

However, as s
(n)
i depends only on s

(n−1)
j by calculating s

(n)
i for all i simultaneously and storing them for the

next iteration, all of the branching is removed. This way, it can be done reasonably quickly even for very
large sets of possible phenotypes.

The differences in reproduction rate derived with this model are generally very small (<0.1%)
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2 Software details

The main simulation software is written in C++14 and can make use of local parallelism. Input file con-
struction and output file analysis is performed by a set of python3 programs. The simulation time can be
altered significantly by scaling the input parameters, but effects outside of small variations have not been
examined. For comparison, the experiment presented in Figure 4 of the main text, comprising 400 000
individual simulations, finished in about 250 core hours running on an Intel Xeon E5-2630 CPU. Scaling was
tested on up to 30 cores and is almost linear. Simple facilities exist for splitting an input file for utilising
multiple machines, but no built in multi-node support has been implemented.

3 Rate of evolution when all mutations are guaranteed to be fixed

Given the relationship between growth rate and drug dose

si(t) = s
(0)
i 2−C(t)/IC50

and the assumption that all mutations become fixed (i.e. they have an infinite fitness advantage), the rate
of evolution is directly proportional to the growth rate.

R ∝ 2−C(t)/IC50

The degree of inhibition is
x = 1− 2−C(t)/IC50

substitute into the equation before it and we get

R ∝ (1− x)

producing the straight lines seen in Figure 2C of the main text. The different slopes depend on what
resistance mutations are possible for each drug.
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Figure 1: Example of population size control under a constant Imatinib treatment. As the fluctuations are
relatively rapid, they are clearly visible even in a short simulation; in this case no resistance mutation had
time to occur during the simulation period.
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Figure 2: Plots comparing the correlation between the IC50 of the most resistant constituent SNV of a
compound mutation, and the IC50 of the compound mutation. Left and right plots show linear and log-log
plot of the same data respectively. For the red points at least one of the IC50 values is a minimum, rather
than an exact value. The dashed line shows a 1:1 correlation. Data from [3, 4]
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4 On IC50 values and Equation (1)

IC50 values are the main way BCR-ABL1 mutant drug sensitivity is reported. Generally these are measured
by allowing cells to grow at a range of inhibitor concentrations for a fixed amount of time, then measuring
cell proliferation using either a [3H]-Thymidine incorporation assay or a tetrazolium based assay (such as
MTS or MTT based assays). These assays measure values proportional to the number of living cells in the
culture. Depending on how these results are analysed, the IC50 values reported could be telling us either

1. the dose required to reduce growth rate to 1⁄2 of the uninhibited rate or

2. the dose required to reduce the number of cells (as measured with one of the aforementioned assays),
after a growth period te, to 1⁄2 the uninhibited number.

We refer to the IC50 values of case 1 IC50
(1) and of case 2 IC50

(2). If we consider Equation (2) in the main
paper as a description of how drug doses impact reproduction rate (case 1), then the number of cells over
time is described by

N(t) = N02s
(0)t2−C/IC

(1)
50

assuming cell density is low enough that exponential growth is an adequate description. Then, the count
based IC50

(2) is the concentration where at some time te the cell count is the average of N0 and N(te)

N02s
(0)te +N0

2
= N02s

(0)te2
−IC

(2)
50 /IC

(1)
50

which rearranges to

IC
(2)
50

IC
(1)
50

= − log2

(
1

s0te
log2

[
2s0te + 1

2

])
the right hand side of which is simply a constant. The two ways of processing the data thus yields proportional
results. Because we define doses by the degree of inhibition they create, i.e. relative to the IC50 values, the
precise nature of how they were determined can thus be ignored as the relative inhibition between different
mutations is preserved regardless and the proportionality constant will be implicitly baked into the chosen
concentrations.
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5 Mutation rates

Because of redundancy in the genetic code, and because transitions are more common SNVs than transver-
sions are mutation rates have to be calculated individually for each mutation.

A T C G
A 1 1 1 4
T 1 1 4 1
C 1 4 1 1
G 4 1 1 1

For instance, the mutation rate for ACT → ATT (most common T315I) is µ ∗ 4. In the program the (rel-
evant) genome is described exactly and this is the method used to find mutation chances. However, when
phenotypes are considered rather than genotypes (which is what matters from a resistance point of view)
redundancy of the genetic code sometimes increases the mutation rate further. Consider a situation where
a TTC phenylalanine mutating to a leucine causes resistance. This can happen in three ways via SNV:
TTC → TTA, TTG, CTC. So the odds of the phenotype mutation is the sum of all three genotype specific
mutation probabilities µ∗(1+1+4). The mutation rates of all commonly included codons in the simulations
in the paper are included below.

Synonymous mutations are also allowed. In the phenylalanine to leucine example above we could see
TTC→ TTT (µ∗4). From there, it could mutate into leucine via TTT→ TTA, TTG, CTC (µ∗ (1+1+4)).
Such a sequence is unlikely but possible. Since synonymous mutations are allowed, it is possible that options
outside of the table below could occur.

Table 1: Mutation rate modifiers for most common codons in simulations from this paper.

Mutation Starting codon Ending codon(s) Probability Modifier (εji)
M244V ATG GTG 4
L248R CTG CGG 1
L248V CTG GTG 1
G250E GGG GAG 4
Q252H CAG CAC 1
Y253F TAC TTC 1
Y253H TAC CAC 4
E255K GAG AAG 4
E255V GAG GTG 1
D276G GAC GGC 4
E279K GAG AAG 4
V299L GTG CTG, TTG 2
T315A ACT GCT 4
T315I ACT ATT 4
F317L TTC TTA, TTG, CTC 6
F317V TTC GTC 1
M343T ATG ACG 4
M351T ATG ACG 4
F359I TTC ATC 1
F359V TTC GTC 1
L384M CTG ATG 1
H396P CAT CCT 1
H396R CAT CGT 4
F486S TTT TCT 4
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6 Derivation of equation (8)

The time between the start of the simulation and the first mutation becoming fixed consists of two parts:
the time until the mutation that will become fixed appears, and the time it takes for the mutated population
to become dominant (the fixation time). However, we cannot directly calculate the median time until some
mutation becomes fixed, as we do not know the distribution of the fixation times. We therefore estimate the
median based on how these two different intervals depend on growth and mutation rates, leaving some fit
parameters.

To derive equation (5) we start by noting that the typical fixation time of a mutation is much longer
than the time interval over which the drug treatments are rotated. As a result of this, we may approximate
the growth rate of a given mutated population r(i) as time-independent and equal to the average over the
interval, i.e.,

r(i)

ln 2
= (1− x)

CA

IC
(i)
50

+ x
CB

IC
(i)
50

= r
(i)
2 .

This expression is accurate up to next-to-leading order in the ratio of the rotation interval and typical fixation
time. The growth rate determines the fixation probability, which can be obtained based on the Moran model,
as described in the main manuscript,

φi = 1− 2r
(wt)
2

2r
(i)
2

.

Until one of the mutations dominates, the population consists mostly of wt cells. Hence, the fixation rate of
a specific mutation is proportional to the rate at which the wt cells can mutate in this way, multiplied by
the fixation probability, i.e. εwtφi. The total fixation rate can thus be approximated as

µφ̄ = µ
∑

i∈nnwt

εwtφi .

The typical time it takes for a mutation to occur that will eventually be fixed is then ∝ 1/φ̄. Once a
mutation that will be fixed has occurred, it will take some more time for it to actually become dominant.
We can estimate the typical fixation time for each separate mutation by the inverse of the growth rate. This
rate is much higher than the rate at which mutations appear, and we may therefore estimate the typical
fixation time with a next-to-leading order term as a constant. The time of the entire event, from the start,
the mutation stage, and finally until fixation of some mutation, should then typically behave as

WT1/2 (x) =
k

φ̄
+m .
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7 Prediction versus simulation of all (approved) drug rotations
(Figure 3)

As can be seen in the figures below, the approximate model described by equation (8) in the main paper
predicts with reasonable accuracy the simulation results for rotations with any pair of approved drugs. The
solid lines are fit using only the endpoints (i.e. WT1/2 of a pure single-drug protocol), and the dashed lines
use a least-squares fit. In most cases fitting based on only the end points is satisfactory, with the exception
of Imatinib-Nilotinib, Imatinib-Dasatinib and Imatinib-Ponatinib rotation (Figures (3a), (3b) and (3d)). In
those cases an inconsistency between the predicted resistance rates for pure protocols and the simulated rates
lead to inaccurate fitting. A least-squares fit works better for those cases. Rotations involving Ponatinib
(Figures (3d), (3g) ,(3i) and, (3j)) result in the biggest benefits when compared to pure protocols of either
drug involved.
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8 Algorithm pseudocode

1: P ← Dictionary from genes i to cell counts Ni

2: repeat
3: Rebalance death rate, q
4: for all Gene and cell count pairs (i,Ni) ∈ P do
5: Ni ← Ni −B(Ni, q)
6: end for
7: Remove any gene-cell count pairs from P where Ni ≤ 0
8: Pnew ← Empty dictionary
9: for all (i,Ni) ∈ P do

10: n← B(Ni, si(t))
11: m← B(n, µi)
12: Ni ← Ni + n−m
13: for each new mutant (m repeats) do
14: Mutated gene i† ← Mutate(i)
15: Pnew[i†]← 1
16: end for
17: end for
18: P ← Merge(P and Pnew)
19: until set number of iterations, or other end condition

Algorithm 1: Model of stochastic cell growth. Initial population set on line 1 is defined by the input file.
On line 15 and 18 if a gene already exists in the dictionary, the cell counts are added together.
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9 Small population size

A drug rotation of Imatinib and Ponaitnib was chosen to test the whether the observed effects are present at
a drastically reduced population size (N̂ = 400) as it has the greatest potential benefit according to theory
(Supplementary material Section 7). A cycle time of 1200 timesteps per drug was used and simulation time
was extended significantly, see Figure 4. As a consequence of the small population size, the observed values
of WT1/2 were much larger than those reported for a simulation with 200,000 cells; since the mutation rate
and division rate were maintained it is very unlikely for mutations to occur. However, increasing mutation
or division rate does not seem to be in line with the biological reality, since 10−7 is already a higher-end
mutation rate, and the most basal stem cells that the reduced pool is intended to model divide very slowly
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Figure 4: Comparison of a 2 months Imatinib, 2 months Ponatinib drug rotation protocol with monodrug
versions in a 400 cell population. Each protocols was simulated 4000 times. The top panel shows a violin plot
of the WT1/2 values from the simulation, with grey area showing probability density and horizontal black
lines showing medians. The bottom panel shows the median WT1/2 for each protocol with a bootstrapped
95% confidence interval. The expected result was a higher WT1/2 for the drug rotation (1200IM2-1200PO2)
than for either monodrug protocol, as in Figure 3d (section 7) above, however, the trend seems to be simply
linear between the pure Imatinib (1200IM2-0PO2) and pure Ponatinib (0IM2-1200PO2).
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