
Computer-vision-assisted extraction of fluorescent signals 

We applied a computer-vision-assisted approach to extract various signals – including 

SYTO16, CD45, and SP142 – from fluorescent images. Specifically, the fluorescent 

signal was processed through (a) median and Gaussian blurring, (b) histogram 

equalization, (c) binary Otsu thresholding computed over the 3D fluorescent images for 

SP142 only (36), and (d) opening and closing operations. This procedure generated a 

mask that calibrated a specific fluorescent signal for each image. A different computer-

vision-assisted method was devised to identify the portions of a source fluorescent 

signal that were attached to another target signal. The processed binary mask of the 

target signal was initially dilated using a distance parameter. The connected components 

(i.e., isolated pixel blocks) were subsequently determined in the source binary mask. A 

source-connected component was deemed attached to the target signal when more than 

a prespecified portion of its area overlapped with the dilated target mask. 

Architecture designs of tumor cell and immune cell segmentation models 

The core tumor cell and immune cell segmentation models for the computer-assisted 

IC algorithm were adapted from the existing Lite-HRNet architecture (37). Lite-HRNet 

– a deep learning model capable of aggregating information across different image 

resolutions – is characterized by suitable performance characteristics for medical 

applications. The Lite-HRNet-18 architecture was combined with the segmentation 



head of HRNetV2 (38) – resulting in over 4.7 million learnable parameters for both 

tumor cell and immune cell segmentation models. 

Model training and evaluation 

The learning targets of the tumor cell and immune cell segmentation models were 

prepared separately. Ground-truth tumor cell regions were manually annotated by 

experienced pathologists, whereas ground-truth annotations of immune cell regions 

were processed from CD45 immunofluorescence staining. Specifically, the binary 

masks for the CD45 and SYTO16 signals were generated by applying the proposed 

computer-vision-based approach. The SYTO16 signal attaching to CD45 was used as 

the learning target for the immune cell segmentation model. Conversely, the training 

sample images for both segmentation models only relied on the SYTO16 and DiD 

fluorescent channels – without information concerning CD45 staining. 

Prior to model training, training images and learning targets were divided into small 

patches. Each patch consisted of 128 × 128 pixels, with neighboring patches 

overlapping by 20% with respect to width/height (equivalent to 25 pixels). All of the 

background patches with no fluorescent staining and 90% of patches that included no 

learning target pixels were discarded. The remaining patches were randomly divided 

(8:1:1 ratio) into the training, validation, and testing datasets (Supplement 5A). 

Additionally, training images were augmented on their saturation, brightness, and 



contrast; to this aim, each parameter was adjusted by a uniformly sampled factor 

between 0.7 and 1.3. 

The tumor cell and immune cell segmentation models were trained over 100 epochs, 

and each training step consisted of a 64-patch batch. We used the binary cross entropy 

loss function as the learning objective for both models; positive and negative pixels 

were inversely weighted according to their counts in the training dataset. During 

training, the learning rate was adjusted through a cosine decay schedule with restarts 

(37). The initial leaning rate was set to 0.002 and decayed to zero within 1300 steps; 

subsequently, each restart halved the initial learning rate and doubled the decaying 

period. After training, the model checkpoint with the least validation loss was retained 

as the segmentation model for the computer-assisted IC algorithm. The 

hyperparameters of both models were adjusted jointly over their validation patch 

dataset and 16 fluorescent images from breast cancer specimens, which led to a 

pixelwise classification threshold of 0.7 and 0.5 for the tumor cell and immune cell 

segmentation models, respectively. The two trained models were subsequently 

evaluated through the testing datasets. The model accuracy, specificity, and sensitivity 

are presented in Supplements 5B and 5C. 

Tumor-infiltrating immune cell detection algorithm  



The detailed parameters used for devising the IC detection algorithm are shown in 

Supplement 5D. In brief, the SYTO16 and DiD channels in each fluorescent image 

were separated from the SP142 channel. The image was subsequently sectioned into 

patches (size: 128 × 128 pixels) from which the predicted masks of tumor cell and 

immune cell regions were generated via the segmentation models; to this aim, the tuned 

classification threshold was applied. Both predicted masks were processed with edge 

smoothing – which was based on the following operations performed sequentially: 

upscaling, median blurring, and downscaling. Smoothed masks were filtered to exclude 

small connected components. 

Next, we approximated the tumor area and the area covered by PD-L1-expressing 

immune cells using computer-vision-based methods. Specifically, the predicted mask 

of immune cell regions was dilated, and its connected components attached to the 

predicted tumor regions were determined. The tumor area was defined as the union 

between the predicted tumor cell regions and attached immune cell regions, whereas 

the area of PD-L1 expression was calculated by extracting SP142 and SYTO16 signals 

from the fluorescent image. To this aim, the union of the SP142 binary mask and its 

attached SYTO16 signal located outside of the tumor cell regions predicted by the 

segmentation model was taken into account. Finally, the predicted IC score was 

calculated by dividing the area of PD-L1 expression by the tumor area. 


