Additional information

Table S1

Lab data (age 24 months):

	Unit	24 mo, Nov 2015	Ref interval
Hemoglobin	g/L	81	105 - 135
Platelets	x 10 ⁹ /L	456	150 - 350
Leucocytes	x 10 ⁹ cells/L	5.9	6.0 - 17
Neutrophils	x 10 ⁹ cells/L	3.5	1.5 - 8.5
Eosinophils	x 10 ⁹ cells/L	0.67	0.04 - 0.4
Basophils	x 10 ⁹ cells/L	0.15	0 - 0.1
Monocytes	x 10 ⁹ cells/L	0.50	0.1 - 1.0
lgG	g/L	15	3.5 – 10.5
IgA	g/L	3.0	0.07 – 0.55
IgM	g/L	1.7	0.27 – 1.2
IgE	kU/L	12,000	<13
TREC	molecules/milion	1.020	>1.500
	cells	· · · ·	
CMV IgG		+	
CMV IgM		+	
CMV PCR		+	
EBV IgG		+	
EBV IgM		-	
EBV PCR		-	
In vitro T cell proliferation (PHA, ConA, PPD,	% of donors	All low	
candida)			
FASCIA (T cell recall response, PHA, PWM, PPD, TT,	% of donors	All low CD4+ and	
candida, influenza, CMV, HSV, VZV)		CD8+	
Complement screening (classical/alternative)		Normal x 2	
Phagocyte function (DHR assay)		Normal	
Anti-TSH receptor ab		+	
Anti-TPO ab		+	
TSH and thyroid hormones		normal	
Immunophenotype (modified FITMAN-panel)			
Absolute lymphocyte number	x 10 ⁹ cells/L	0.94	1.7 – 6.9
CD3+ cells	x 10 ⁹ cells/L	0.60	0.9 – 4.5
T cells			
CD3+ cells	% of lymphocytes	64	43 - 76
T cells			
CD3-CD19+CD20+	x 10 ⁹ cells/L	0.18	0.16 - 2.0
B cells			
CD3-CD19+CD20+	% of lymphocytes	20	9 - 24
B cells			
CD3-CD56+	x 10 ⁹ cells/L	0.13	0.1 - 1.0
NK cells			
CD3-CD56+	% of lymphocytes	14	4 - 23
NK cells			
CD4+ cells			
CD3+CD4+	x 10 ⁹ cells/L	0.39	0.62 - 0.86
CD3+CD4+	% of CD3+	65	58 - 70
CD3+CD4+CCR7+45RA+	x 10 ⁹ cells/L	0.05	0.26 - 0.38
	•		

Naïve CD4+ T cells			
CD3+CD4+CCR7+45RA+	% of CD3+	9	22 - 34
Naïve CD4+ T cells			
CD3+CD4+CCR7+45RA+CD31+	x 10 ⁹ cells/L	0.03	0.12 - 0.24
CD4+ Recent thymic emigrants			
CD3+CD4+CCR7+45RA+CD31+	% of CD3+	5	11 - 19
CD4+ Recent thymic emigrants	0		
CD3+CD4+CCR7+45RA-	x 10° cells/L	0.13	0.20 – 0.34
Central memory CD4+ T cells			
CD3+CD4+CCR7+45RA-	% of CD3+	21	18 - 27
Central memory CD4+ T cells	0		
CD3+CD4+CCR7-45RA+	x 10 [°] cells/L	<0.01	0 - 0.02
Effector CD4+ T cells			
CD3+CD4+CCR7-45RA+	% of CD3+	1	0 - 1
Effector CD4+ T cells			
CD3+CD4+CCR7-45RA-	x 10 ⁹ cells/L	0.19	0.11 – 0.22
Effector memory CD4+ T cells			
CD3+CD4+CCR7-45RA-	% of CD3+	21	11 - 15
Effector memory CD4+ T cells			
CD3+CD4+CCR7+45RA+CD38+HLADR+	x 10 ⁹ cells/L	< 0.01	0-0.01
Activated naïve CD4+ T cells			
CD3+CD4+CCR7+45RA+CD38+HLADR+	% of CD3+	<1	0 - 1
Activated naïve CD4+ T cells			
CD3+CD4+CCR7+45RA-CD38+HLADR+	x 10 ⁹ cells/L	4	0 - 1
Activated central memory CD4+ T cells			
CD3+CD4+CCR7+45RA-CD38+HLADR+	% of CD3+	0.02	0 - 1
Activated central memory CD4+ T cells			
CD3+CD4+CCR7-45RA+CD38+HLADR+	x 10 ⁹ cells/L	< 0.01	0 - 1
Activated effector CD4+ T cells			
CD3+CD4+CCR7-45RA+ CD38+HLADR+	% of CD3+	<1	0 - 1
Activated effector CD4+ T cells			
CD3+CD4+CCR7-45RA-CD38+HLADR+	x 10 ⁹ cells/L	0.05	0-0.01
Activated effector memory CD4+ T cells			
CD3+CD4+CCR7-45RA-CD38+HLADR+	% of CD3+	8	0.4 - 0.7
Activated effector memory CD4+ T cells			
CD3+CD4+CCR7-45RAlowCD38+HLADR+	x 10 ⁹ cells/L	< 0.01	0 - 1
CD4+ EMRA	,		
CD3+CD4+CCR7-45RAlowCD38+HLADR+	% of CD3+	0.26	0 - 0.02
CD4+ EMRA			
CD3+CD4+CCR7+45RA-CXCR3+CCR6-	x 10 ⁹ cells/L	0.14	0.13 - 0.21
TH1 cells			
CD3+CD4+CCR7+45RA-CXCR3+CCR6-	% of CD3+	24	12 - 16
TH1 cells			
CD3+CD4+CCR7+45RA-CXCR3-CCR6-	x 10 ⁹ cells/L	0.20	0.30 - 0.42
TH2 cells			
CD3+CD4+CCR7+45RA-CXCR3-CCR6-	% of CD3+	34	27 - 37
TH2 cells	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	51	2, 3,
CD3+CD4+CCR7+45RA-CXCR3-CCR6+	x 10 ⁹ cells/l	0.02	0.06 – 0.10
TH17 cells		0.02	0.00 0.10
	% of CD3+	4	50-76
TH17 cells	70 01 0001	т	5.6 7.0
CD3+CD4+CCR4+CD25biCD127low/45RO-	x 10 ⁹ cells/l	<0.01	0.02 - 0.02
Naïve Treg	A TO CEIIS/E	NU.U1	0.02 0.02
CD3+CD4+CCR4+CD25hiCD127low/45RO-	% of CD3+CD4+	<1	24-38
	70 01 CD31 CD4T	* ±	2.7 3.0
Huive Heg			

CD3+CD4+CCR4+CD25hiCD127low45RO+	x 10 ⁹ cells/L	0.03	0.02 - 0.04
Memory Treg			
CD3+CD4+CCR4+CD25hiCD127low45RO+	% of CD3+CD4+	8	3.4 - 5.4
Memory Treg			
CD3+CD4+CCR4+CD25hiCD127low45RO-HLADR+	x 10 ⁹ cells/L	<0.01	0 - 1
Activated naïve Treg			
CD3+CD4+CCR4+CD25hiCD127low45RO-HLADR+	% of CD3+CD4+	<1	0 – 0.6
Activated naïve Treg			
CD3+CD4+CCR4+CD25hiCD127low45RO+HLADR+	x 10 ⁹ cells/L	0.02	0.01 - 0.02
Activated memory Treg			
CD3+CD4+CCR4+CD25hiCD127low45RO+HLADR+	% of CD3+CD4+	6	1.3 – 2.1
Activated memory Treg			
CD8+ cells			
CD3+CD8+	x 10 ⁹ cells/L	0.18	0.25 – 0.49
CD3+CD8+	% of CD3+	30	24 - 34
CD3+CD8+CCR7+45RA+	x 10 ⁹ cells/L	< 0.01	0.07 - 0.13
Naïve CD8+ T cells			
CD3+CD8+CCR7+45RA+	% of CD3+	1	6 - 12
Naïve CD8+ T cells			
CD3+CD8+CCR7+45RA-	x 10 ⁹ cells/L	< 0.01	0.03 - 0.05
Central memory CD8+ T cells			
CD3+CD8+CCR7+45RA-	% of CD3+	<1	2.6 - 5.0
Central memory CD8+ T cells			
CD3+CD8+CCR7-45RA+	x 10 ⁹ cells/L	0.05	0.01 - 0.13
Effector CD8+ T cells			
CD3+CD8+CCR7-45RA+	% of CD3+	8	2 - 8
Effector CD8+ T cells			
CD3+CD8+CCR7-45RA-	x 10 ⁹ cells/L	0.09	0.06 - 0.10
Effector memory CD8+ T cells			
CD3+CD8+CCR7-45RA-	% of CD3+	15	5 - 8
Effector memory CD8+ T cells			
CD3+CD8+CCR7+45RA+CD38+HLADR+	x 10 ⁹ cells/L	< 0.01	0-1
Activated naïve CD8+ T cells			
CD3+CD8+CCR7+45RA+CD38+HLADR+	% of CD3+	<1	0 - 0.03
Activated naïve CD8+ T cells			
CD3+CD8+CCR7+45RA-CD38+HLADR+	x 10 ⁹ cells/L	<0.01	0-1
Activated central memory CD8+ T cells			
CD3+CD8+CCR7+45RA-CD38+HLADR+	% of CD3+	<1	0-1
Activated central memory CD8+ T cells			
CD3+CD8+CCR7-45RA+CD38+HLADR+	x 10 ⁹ cells/L	0.02	0-0.01
Activated effector CD8+ T cells			
CD3+CD8+CCR7-45RA+CD38+HLADR+	% of CD3+	4	0-1
Activated effector CD8+ T cells			
CD3+CD8+CCR7-45RA-CD38+HLADR+	x 10 ⁹ cells/L	0.05	0-0.01
Activated effector memory CD8+ T cells			
CD3+CD8+CCR7-45RA-CD38+HLADR+	% of CD3+	8	0 - 1
Activated effector memory CD8+ T cells			
CD3+CD8+CCR7-45RAlowCD38+HLADR+	x 10 ⁹ cells/L	0.01	0-0.01
CD8+ EMRA			
CD3+CD8+CCR7-45RAlowCD38+HLADR+	% of CD3+	2	0-1
CD8+ EMRA			
B cells			
CD3-CD19+CD20+CD27-	x 10 ⁹ cells/L	0.10	0.05 – 1.0
CD24lowCD38lowIgD+lgM+			
Naïve B cells			

CD3-CD19+CD20+CD27-	% of CD19+	56	32 – 90
CD24lowCD38lowIgD+IgM+			
Naïve B cells			
CD3-CD19+CD20+CD27-CD24hiCD38hilgD+lgM+	x 10 ⁹ cells/L	0.03	0.01 - 0.05
Transitional B cells			
CD3-CD19+CD20+CD27-CD24hiCD38hilgD+lgM+	% of CD19+	16	4 - 30
Transitional B cells			
CD3-CD19+CD20+CD27+lgD+lgM+	x 10 ⁹ cells/L	< 0.01	0.01 – 0.25
Marginal zone-like B cells			
CD3-CD19+CD20+CD27+lgD+lgM+	% of CD19+	2	2 -20
Marginal zone-like B cells			
CD3-CD19+CD20+CD27+lgD-lgM+	x 10 ⁹ cells/L	<0.01	0-0.02
IgM+ memory B cells			
CD3-CD19+CD20+CD27+lgD-lgM+	% of CD19+	2	1 - 5
IgM+ memory B cells	_		
CD3-CD19+CD20+CD27+lgD-lgM-	x 10 ⁹ cells/L	<0.01	0.01 - 0.05
Class switched memory B cells			
CD3-CD19+CD20+CD27+lgD-lgM-	% of CD19+	4	1 – 20
Class switched memory B cells	_		
CD3-CD19+CD20-CD38+CD27hi	x 10 ⁹ cells/L	0.01	0-0.04
Plasmablasts			
CD3-CD19+CD20-CD38+CD27hi	% of CD19+	6	0 - 5
Plasmablasts			

Table S2. Current Gene List for Congenital Immune Defects (N=305)

IBTK	NOD2	C4B
ВТК	LPIN2	C2
IGHM	IL1RN	C3
IGLL1 (λ5)	RBCK1 / HOIL1 / XAP3	C5
CD79A	IL36RN	C6
CD79B	SLC29A3	C7
BLNK	CARD14 (CARMA2)	C8A
LRRC8A	SH3BP2	C8B
ICOS	PSMB8	C8G
CD19	PLCG2	C9
CD81	CECR1 / ADA2	SERPING1 / C1INH
MS4A1 (CD20)	TAP2	CFB
TNFRSF13B (TACI)	TAP1	CFD
TNFRSF13C (BAFF-R)	TAPBP (Tapasin)	PFC / CFP
CD21 / CR2	RFX5	CFI
CD40LG	RFXAP	HF1 / CFH
CD40	MHC2TA / CIITA	MBL2
AICDA	RFXANK	MASP1
UNG	ORAI1	MASP2
CARD11/CARMA11/BIMP	STIM1	COLEC11/CLK1
3	CD8A	CD46
IL21R	ZAP70	PIGA
LRBA	RHOH	CD59
MOGS	MSN	FCN3
SPPL2A	PIK3CD	C1QBP
TCF3 / E2A	CTPS1	CFHR1
PIK3R1	ІКВКВ	CFHR3
TWEAK / TNFSF12	TRAC	THBD
NFKB2	MALT1	TPP2
PRKCD	OX40 / TNFRSF4	IKBKG
TRNT1	ZBTB24 (ICF2)	NFKBIA
CLEC16A	DOCK2	IRAK4
IL21	CTLA4	MYD88
NOTCH1	CD28	CXCR4
RTP4	NEIL3	TMC6 / EVER1
MAP3K14	RIPK1	TMC8 / EVER2
MEFV	SEC16A	STAT2
MVK	TFRC	RPSA
CIAS1 / PYPAF1 /NLRP3	MIR181A1	PBX1
NALP12 /NLRP12	C1QA	NLK
TNFRSF1A	C1QB	IRF7
IL10RA	C1QC	MST1
IL10RB	C1S	DKC1
IL10	C1R	NOLA3 / NOP10
PSTPIP1	C4A	TERC

TINF2	TBK1	TNFSF11
NHP2	STAT3	TNFRSF11A
RTEL1	DOCK8	TCIRG1
PRF1 (Perforin)	TYK2	OSTM1
UNC13D	PGM3	CLCN7
STX11	UNC119	SNX10
STXBP2	CHS1 / LYST	PLEKHM1
SH2D1A	MYO5A	CA2
XIAP	RAB27A	GATA2
ІТК	AP3B1	GMCSFR / CSF2RA
CD27 / TNFRSF7	NKX2-5	CARD9
ELANE	MKL1	IL17RA
GFI1 / ZNF163	PTPN14	IL17F
HAX1	GJC2	TRAF3IP2 / ACT1
G6PC3	PROX1	CLEC7A
SLC37A4	ΡΙΚ3ϹΑ	APOL1
P14 / MAPBPIP /	VEGFC	RMRP
LAMTOR2	RASA1	IKZF1 (Ikaros)
TAZ	FLT4 / VEGFR3	STAT5B
COH1 / VPS13B	GJA1	MAGT1
C16orf57 (USB1)	ITGA9	WAS
ITGB2 (CD18)	TSC1	WIPF1
SLC35C1 / FUCT1 (Fucose	PTEN	VAV1
transp.)	KIF11	ATM
KIND3 / KINDLIN3 /	FOXC2	MRE11A
FERMT3	TSC2	NBS1 / NBN
RAC2	CCBE1	RECQL3 / BLM
АСТВ	SOX18	DNMT3B
FPR1	G6PC (formerly G6PT)	RNF168
CTSC (Cathepsin C)	ALG1	SMARCAL1
CEBPE	TCN2	SPINK5
SBDS	SLC46A1	SP110
CYBB / p91-PHOX	MTHFD1	CHD7
CYBA / p22-PHOX	IL12B/23 (p40)	POLE
NCF1 / p47-PHOX	IFNGR1	TTC7A
NCF2 /p67-PHOX	IFNGR2	TPP1
NCF4 / p40-PHOX	IRF8	TERT
MPO	ISG15	LCK
GATA1	IL12RB2	PNP
CSF3R	SLC11A1 / NRAMP1	STK4
VPS45	SPPL2A	TNFRSF6 (CD95/Fas)
JAGN1	IL12RB1	TNFSF6 (CD178/FASLG)
CD4	STAT1	CASP10
TLR3	FCGR3A/CD16B	CASP8
UNC93B1	MCM4	NRAS
TRAF3	INO80	FADD
TICAM1 / TRIF	GCCR / NR3C1	AIRE

FOXP3 IL2RA ITCH KRAS MUC2 TMEM173 FOXN1 TBX1 IL2RG JAK3 IL7R PTPRC CD3D CD3E CD3G CD247 CORO1A RAG1 RAG2 DCLRE1C LIG4 LIG1 PRKDC AK2 ADA NHEJ1 TREX1 RNASEH2A RNASEH2B RNASEH2C SAMHD1 ADAR ACP

Figure S1 A

Alignment of PCR sequences for control samples

Exon 7 vt 931>CTACTTCTCACAGGGCCTGTCAGTTCAGCTGTTTAATGATGGGTCCAAGGGCAAACTCAATCATTTATGTGGAGCTGACTTTGTGAAAAGTCATCAGAAA>1030 fif 257>CTACTTCTCACAGGGCCTGTCAGTTCAGCTGTTTAATGATGGGTCCAAGGGCAAACTCAATCATTTATGTGGAGCTGACTTTGTGAAAAGTCATCAGAAA>356 fir 345 <ctacttctcacagggcctgtcagttcagctgtttaatgatgggtccaagggcaaactcaatcatttatgtggagctgacttgtgaaaagtcatcagaaa>368 mif 255>CTACTTCTCACAGGGCCTGTCAGTTCAGCTGTTTAATGATGGGTCCAAGGGCAAACTCAATCATTTATGTGGAGCTGACTTTGTGAAAAGTCATCAGAAA>354 mir 344<ctacttctcacagggcctgtcagttcagctgtttaatgatgggtccaagggcaaactcaatcatttatgtggagctgactttgtgaaaagtcatcagaaa>354 mir 344<ctacttctcacagggcctgtcagttcagctgtttaatgatgggtccaagggcaaactcaatcatttatgtggagctgactttgtgaaaagtcatcagaaa>354</ctacttctcacagggcctgtcagttcagctgtttaatgatgggtccaagggcaaactcaatcatttatgtggagctgactttgtgaaaagtcatcagaaa></ctacttctcacagggcctgtcagttcagctgtttaatgatgggtccaagggcaaactcaatcatttatgtggagctgactttgtgaaaagtcatcagaaa></ctacttctcacagggcctgtcagttcagctgtttaatgatgggtccaagggcaaactcaatcatttatgtggagctgacttgtgaaaagtcatcagaaa>
Exon 8
<pre>wt 1031>cctccacagggaatggaaattaagtccatgaaagatgctgttcttttgatggagatgcagacaga</pre>
<pre>wt 1117>TGCAGATGGCCACTTTCATCATAGATGGAGACAAGATAGCAACGTTAATTAGCAGTTTCCTTAAAGAGCTCCTGGTGGAGATTGGAGAAAGTTTGAAT>1216 f1f 443>TGCAGATGGCCACTTTCATCTCATAGATGGAGAAAGATAGCAACGTTAATTAGCAGTTTCCTTAAAGAGCTCCTGGTGGAGATTGGAGAAAGTTTGAAT>542 f1r 159<tgcagatggccactttcatctcatagatggagacaagatagcaacgttaattagcagtttccttaaagagctcctggtggagattggagaaagtttgaat<60 441="" p1f="">TGCAGATGGCCACTTTCATCTCATAGATGGAGACAAGATAGCAACGTTAGTTA</tgcagatggccactttcatctcatagatggagacaagatagcaacgttaattagcagtttccttaaagagctcctggtggagattggagaaagtttgaat<60></pre>
Exon 9
<pre>wt 1217>attggtgttgtacaaactgcatatgcaaatggaagttcaacacggtacttgaagagttatgaaggtactgtgtatatgcactaggactggtgtaaaac>1316 f1f 543>atTGGTGTACAAACTGCATATGCAAATGGAAGTTCAACACGGTATCTTGAAGAAGTTATGAAGATGCTGTCTATTGCACTAGACTGGTGTAAAAC >642 f1r 59<attggtgttgtacaaactgcatatgcaaatggaagttcaacacggtatcttgaagaagtacaggtgctattgcactagactggtgtaaaac 379="" <3="" f2f=""></attggtgttgtacaaactgcatatgcaaatggaagttcaacacggtatcttgaagaagtacaggtgctattgcactagactggtgtaaaac></pre>

B

Alignment of patient RNA species with exon 7 and exon 7-9 deletions

Figure S1. Alignment of sequences for PCR products from patient and control samples. A) PCR fragments from control samples aligned to the wt sequence, f1 and m1 are the larger and f2 andm2 the shorter fragments from the PCR for two healthy controls. B) PCR fragments from patient samples. Top row shows the wt mRNA sequence, rows 2 and 3 the large PCR fragment, rows 4 and 5 the sequences for the small fragment.

PCR was performed using a forward primer binding in exon 5 and the reverse primer binding in exon 10. Exon 7 in yellow, exon 8 in blue and exon 9 in gray. The position for the reverse primer is indicated in green.

Figure S2

A

Alignment of patient RNA species with partial intron 7 retention

Exon 7 WT AGGGCAAACTCAATCATTTATGTGGAGCTGACTTTGT CATCAGAAACCTCCACAG>12200 Pat fw ATCAGAACCTCCACAG>16 10 Pat rev 632< CATTTATGTGGAGCTGACTTTGTGAAAAGTCATCAGAAACCTCCACAG<585 $12_{2}01> c_{\text{ptatgrcgtactagcactgc}} a a a a transformation of the transformation of transfor$ $84<\!\!\mathrm{c}$ stototoctactaccactocaaaaatttottttaatoctctttgaacccaatctcacttataaactaacgtogtaaagtgagttaacaatcttgcacc<485 12401>catagtctacaggaaatcagggggaaagcaaagtcaggaaatggcattctagagcagtggttctcaaactggcatgtgtcagaatcactttgagggct>12500 217>CATAGTCTACAGGAAATCAGGTGGGGAAAGCAAAGTCAGGAAATGGCATTCTAGAGCAGTGGTTCTCAAAACTGGCATGTGTCAGAAATCACTTTGAGGGCT>316 384<CATAGTCTACAGGAAATCAGGTGGGGAAAGCAAAGTCAGGAAATGGCATTCTAGAGCAGTGGTTCTCAAACTGGCATGTCTCAGAATCACTTTGAGGGGCT<285 12501>TGTTAGCACAGAGATTCCCCGCTCCCACTTCCGGAGGTCTGGGAGGTCTGGCATAGGATTTGCATATGATAGAAATTTGCATTCCTATCCAGGTTTGCCAGGC>12600417>TTTGTTCCCAGTGCTTGTCTGGGGATCCCTTTTTGAGAATCACAGATCTACAGGGGAGCATA--->479 <122 184<TTTGTTCCCAGTGCTTGTCTGGGGATCCCTTTTTGAGAATCACAGATCTACAGGGGAGCATA Exon 8 13901>agaaaattctaaaactctttataataaattcttagactgaaatgcatgttaaattatcctgtgtgctgctaggaaattaagtccaatgaaagatgctg>14000480> SAATGGAAATTAAGTCCAATGAAAGATGCTG>509 121<-ЗААТССАААТТААСТССААТСАААСАТССТС<92 $14001 > \texttt{TTCTTTTGATGGAGATGCAGACAGACATGTTTATTACTACCATGATGCAGATGGCCACTTTCATCTCATAGATGGAGACAAGATAGCAACGTTAATTAGC>14100$ 510>ttcttttgatgagatgcagacagaattgtttattactaccatgatgcagatggccactttcatagatggagacaagatagcaacgttaattagc>60991<TTCTTTTGATGGAGATGCAGACAGAATTGTTTATTACTACCATGATGCAGATGGCCACTTTCATCTCATAGATGGAGACAAGATAGCAACG ~1 B Alignment of patient RNA species with wt sequence WT cDNA sequence CRGTTTAATGATGGGTCCAAGGGCAAACTCAATCATTATGTGGGGGCTGACTTTGTGAAAAGTCATCAGAAACCTCCA>900 Healthy control forward -ACCTCCA>9 Patient small fragment forward AACCTCCA>15 Healthy control reverse GGCAAACTCAATCATTTATGTGGAGCTGACTTTGTGAAAAGTCATCAGAAACCTCCA<126 Patient small fragment reverse - GCAAACTCAATCATTATGTGGAGCTGACTTTGGTGAAAAGTCATCAGAAACCTCCA<111 Exon 7/8 junction 10>CAGGGAATGGAAATTAAGTCCAATGAAAGATGCTGTTCTTTTGATGGAGATGCAGAACAGAATTGTTTATTACTACCATGATGCAGATGGCCACTTTCATC>109 $125 < \texttt{cagggaatggaaatgccaatgacagatgccaa$ $110 < \texttt{cagggaattggaaattaagtccaatgaagatgctgttcttttgatggagatgcagaatgctgtttattactaccatgatgccgatggccactttcatc< 11$ $1001 \verb+ tcatagatggagacaagatagcaacgttacttactagcagttccttaagagctcctggtggagattggagaagtttgatattggtgttgtacaaactgc>1100$ 110>TCATAGATGGAGACAAGATAGCAACGTTAATTAGCAGTTTCCTTAAAGAGCTCCTGGTGGA ~>170 116>TCATAGATGGAGACAAGATAGCAACGTTAATTAGCAGTTTCCTTAAAGAGCTCCTGGTGGA >176 25<TCATAGATGGAGACAAGATAGCAAC <1 10<TCATAGATG <2

Figure S2. Alignment of the sequence of PCR fragments from patient samples using a forward primer binding in exon 7 and the reverse primer binding in exon 8. A) The sequence of the large PCR fragment with partial intron

7 retention aligned to the genomic sequence. The A>G mutation in the intron sequence is indicated by the arrow. Only the relevant part of intron 7 is included

B) The sequence of the small PCR fragment corresponding to the wt mRNA sequence. The exon 7/8 junction is indicated by the red arrow.

Figure S3

Figure S3. RT-PCR performed on mRNA from peripheral blood and EBV-transformed B-cells. Agarose gel analysis of RT-PCR performed on cDNA from patient cells (P) and from two healthy controls (C1 and C2). The PCRs were performed using A) forward primer in exon 4 and reverse primer in exon 8, B) forward primer in exon 10 and reverse primer in exon 12.

Figure S4

Figure S4. Identified exonic splicing silencers (ESS) and intronic splicing enhancers(ISE) around the mutation site. The wild type sequence is shown in the top panels and the patients sequence in the bottom panels. The splice site is in position196 (GG/GTaT) with the mutated base in lower case. The mutation increase the presence of ESS sites as identified using the on line toolACESCAN2, http://genes.mit.edu/cgi-bin/acescan2.

MATERIAL AND METHODS

Whole exome sequencing

Genomic DNA was prepared and quantified using Qubit 2.0 Fluorimeter (Invitrogen), fragmented into average 300-bp fragments using E220 focused-ultrasound sonicator (Covaris) and 3 µg of the fragmented DNA was converted into sequencing ready library using SureSelect XT library preparation and the Clinical Research Exome bait set (Agilent Technologies). The obtained library was quantified using Qubit 2.0 and sequenced on HiSeq 2500 (Illumina) in rapid-run mode. Paired end sequencing was carried out to yield 85 M read pairs corresponding to an average coverage of 250x.

Bioinformatic analysis of the sequence data was carried out using v1.5.6 of Mutation Identification Pipeline (MIP) [1]. MIP aligns the sequence reads, calls variants and annotates the variants with information from several databases. MIP then considers the annotated information and the genetic inheritance pattern when calculating a rank score for each variant. For clinical interpretation, the variants are sorted according to the rank score and assessed in decreasing order. The sequence reads were aligned to the whole human genome reference GRCh37 using Mosaic (v.2.2.3) and PCR and optical duplicates were marked using PicardTools (Picard 2013, http://picard.sourceforge.net:). GATK v.2.8-1 performed realignment, base recalibration, and variant identification [2]. The results were uploaded to a browser-based tool (Scout, in-house developed at Clinical Genomics facility at Science for Life Laboratory, Stockholm, Sweden) for clinical variant interpretation. The clinical interpretation was restricted to 305 genes associated to immunodeficiency and auto-inflammatory diseases (Supplementary Table S1).

Sanger sequencing

The following primers were designed to amplify a DNA sequence including the variant.

PGM3-Forward (Fw): CTGTCAGTTCAGCTGTTTAATG

PGM3-Reverse(Rv): AGCTGCAAGATTCTTAACTCAC.

PCR was performed in a volume of 20 µL including 20 ng of DNA, 200 nM of primer and 1x AmpliTaq Gold 360 Master Mix (Thermo Fisher Scientific). After an initial step of 95°C for 7 min, 34 cycles of PCR were conducted with denaturation at 94°C for 30 seconds (sec) followed by annealing at 60°C for 35 sec and elongation at 72°C for 45 sec The same primers were used for Sanger sequencing in both directions using the BigDye Terminator v3.1 sequencing kit (Thermo Fisher Scientific). The sequencing reaction was purified with the BigDye XTerminator Purification Kit (Thermo Fisher Scientific) according to the manufacturer's instructions, and run on the ABI 3130xl instrument. Results were analyzed using the Sequencing Analysis software (Thermo Fisher Scientific).

Establishing Epstein Barr Virus (EBV) transformed B-cells and in vitro cell culturing

Peripheral blood from the patient and from healthy controls (n=4) were collected in EDTA tubes, diluted 1:2 in RPMI1640 (Life Technologies), with 20 % DMSO, aliquoted in 1.2 ml/tube and frozen at -80 or -150°C until used for further analysis as previously described [3].

To establish EBV cell lines aliquots of frozen whole blood or cells from fresh blood were used. Frozen cells were thawed and washed in RPMI-20% FCS (RPMI-20) containing EDTA, while erythrocytes in freshly retrieved blood were lysed using IO-T3 lyse buffer (Beckman Coulter). Cells were then washed with RPMI-20 medium, counted and re-suspended in filtered EBV B95-8 supernatant (kindly provided by professor Ingemar Ernberg, Karolinska Institutet). Cells, 10^7 /ml, were incubated with virus supernatant at 37° C for 90 min, pelleted, and re-suspended in RPMI-20, supplemented with 10 mM HEPES, 1x PEST (both from Life Technologies), and 1 µg cyclosporin A (Sigma) /ml, and divided in two wells in a U-bottomed 96-well plate. The plates were incubated under normal cell culture conditions (5% CO₂ and 95% humidified atmosphere) for several weeks. Half of the medium in the wells was exchanged every 4-5 days and after 2 weeks the cyclosporin was withdrawn. Control and patient samples were treated in parallel. No EBV transformed cells were recovered from frozen patient samples while easily recovered from all controls.

EBV transformation of fresh unfrozen cells from the patient blood was also tried and then the culture medium was conditioned by adding 50% sterile-filtered (0.2 μ m) medium from established normal EBV cell cultures. Under these conditions EBV-transformed cells from the patient sample could eventually be established. Cells were expanded and maintained in RPMI-20 supplemented with 10 mM HEPES and 50 μ g/ml Gentamicine (Life Technologies) to provide material for further analyzes.

Reverse Transcriptase (RT)-PCR and quantitative RT-PCR

RNA was extracted from peripheral whole blood and from EBV cells from patient and healthy controls using the Trireagent (Sigma) according to the manufacturer's protocol. cDNA was prepared using the High capacity cDNA Reverse transcription (RT) Kit (Thermo Fisher Scientific) with random primers and 500 ng total RNA in each 20 μ L reaction.

For PCR each reaction 1 μ L cDNA and 1x AmpliTaq Gold 360 Master Mix were used and the same PCR conditions as described above. Primers binding in exons 4, 5, 7, and 10 combined with Rv primers in exons 4, 8, 10 and 12 were used as indicated in figures.

Quantitative RT-PCR was performed using the Power SYBR Green PCR master mix and a StepOne Plus real time PCR instrument (Applied Biosystems). A primer binding over the exon 7/8 junction (Fw e7/8) was used in combination with the Rv e8 primer to specifically amplify wild type (wt) mRNA. and related to the house keeping gene *HPRT* in order to calculate the relative amount of correctly spliced mRNA.

Primer sequences for RT-PCR: Fw e 4 5'TGGTTGATCCTTTGGGTGA3' Fw e 5 5'GATACCAGGCCCAGCAGTGA3' Fw e 7 5'GCAAACTCAATCATTTATGTGG3'; FW e7/8 junction 5'CCTCCACAGGGAATGGAAA3' Fw e 10 5'CACTAAGACTGGTGTAAAACATTTGC3'; Rv e 4 5'TCACAGCTTCTTTCTCGCTGA3' Rv e 8 5'TCCACCAGGAGCTCTTTAA3' Rv e 10 5'GTTTTACACCAGTCTTAGTGCAA3' Rv e 12 5'TCAAGCCCTTCAGAGCCAA3'. Fw HPRT 5'GACTTTGCTTTCCTTGGTCAG Rv HPRT 5'GGCTTATATCCAACACTTCGTGGG

Immunoblotting

Cells were lysed in RIPA buffer (50 mM Tris-HCl, pH 7.4 with 50 mM sodium fluoride, 150 mM sodium chloride, 2 mM EDTA, 1.0% NP-40, 0.5% sodium deoxycholate, and 0.1% sodium dodecyl sulfate (SDS)), supplemented with EDTA-free complete protease inhibitor cocktail (Roche). The lysates were separated on a SDS BIS-TRIS 4-12% polyacrylamide gels (Life Technologies) and blotted to cellulose filter using the iBlot dry blotting system (Life Technologies). Staining for specific proteins was made using rabbit anti-PGM3 (PA5-22353, Thermo Scientific) and mouse anti-actin (A-5441, Sigma) and with the secondary antibodies goat anti-mouse-800CW and goat anti-rabbit-680, respectively (both from LiCor Biosciences). The signals were quantified using the Odyssey imaging system (LiCor Biosciences) and the PGM3 relative to actin levels were calculated.

References

[1] H. Stranneheim, M. Engvall, K. Naess, N. Lesko, P. Larsson, M. Dahlberg, R. Andeer, A. Wredenberg, C. Freyer, M. Barbaro, H. Bruhn, T. Emahazion, M. Magnusson, R. Wibom, R.H. Zetterstrom, V. Wirta, U. von Dobeln, A. Wedell, Rapid pulsed whole genome sequencing for comprehensive acute diagnostics of inborn errors of metabolism, BMC Genomics, 15 (2014) 1090.

[2] A. McKenna, M. Hanna, E. Banks, A. Sivachenko, K. Cibulskis, A. Kernytsky, K. Garimella, D. Altshuler, S. Gabriel, M. Daly, M.A. DePristo, The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data, Genome Res, 20 (2010) 1297-1303.

[3] K.E. Lundin, A. Hamasy, P.H. Backe, L.N. Moens, E. Falk-Sorqvist, K.B. Elgstoen, L. Morkrid, M. Bjoras, C. Granert, A.C. Norlin, M. Nilsson, B. Christensson, S. Stenmark, C.I. Smith, Susceptibility to infections, without concomitant hyper-IgE, reported in 1976, is caused by hypomorphic mutation in the phosphoglucomutase 3 (PGM3) gene, Clin Immunol, 161 (2015) 366-72.