Supplemental material for the manuscript entitled

'Anti-tissue transglutaminase antibodies (TG2A) positivity and the risk of vitamin D deficiency among children - A cross-sectional study in the Generation R cohort'

TG2A positivity at 6 years of age **Total population TG2A** negative **TG2A** positive p-(n=3994) (TG2A <7 U/ml) (TG2A > 7 U/ml)value^a (n=3940) (n=54) Child characteristics^b 3493.7 (604.6) 0.42 Birth weight (grams; mean, SD) 3434 (551.7) 3433.1 (551.0) Female gender (n,%) 1934 (48.4) 1899 (48.2) 35 (64.8) 0.01 Ethnicity (n,%) 0.09 Non-Western 1312 (33.7) 1300 (33.9) 12 (22.6) Western 2578 (66.3) 2537 (66.1) 41 (77.4) Breastfeeding (n,%) Exclusively breastfed in the first 656 (25.8) 645 (25.7) 11 (30.6) 0.15 4 months Partially breastfed in the first 4 1650 (64.9) 1625 (64.8) 25 (69.4) months Never breastfed 237 (9.3) 237 (9.5) 0 (0.0) Gluten introduction >6 months (n,%) 1498 (56.1) 1479 (56.2) 19 (51.4) 0.55 Diet score (standardized to 1200 0.48 4.2(1.3)4.2 (1.3) 4.0 (1.3) kcal/d; mean, SD) 0.54 Vitamin D supplementation (n,%) 1131 (45.0) 1113 (44.9) 18 (50.0) Gastroenteritis past year (n, %) 1375 (40.0) 1352 (39.9) 23 (47.9) 0.26 BMI child at 6 years of age (kg/m^2) ; 15.8 (15.1-16.9) 15.4 (14.7-16.3) 0.01 15.9 (15.1-16.9) median, IQR) Playing outside at 6 years of age 1.3 (0.8-2.1) 1.3 (0.8-2.1) 1.3 (0.7-2.1) 0.70 (hours/day; median, IQR) 25(OH)D serum concentrations at 28.9 (15.2-46.6) 28.9 (15.2-46.6) 33.6 (13.7-45.9) 0.84 birth (nmol/L; median, IQR) Season of blood draw at 6 years of age (n,%) 0.09 Winter/Spring 1989 (49.8) 1956 (49.6) 33 (61.1) Summer/Fall 2005 (50.2) 1984 (49.7) 21 (38.9) 25(OH)D serum concentrations at 6 63.9 (45.1-81.0) 63.9 (45.1-81.0) 62.0 (44.9-82.7) 0.80 years of age (nmol/L; median, IQR) 25(OH)D status at 6 years of age (n,%) Deficient (<50 nmol/l) 1199 (30.0) 1182 (30.0) 17 (31.5) 0.35 Sufficient (\geq 50 to <75 nmol/L) 1463 (36.6) 1448 (36.8) 15 (27.8) Optimal ($\geq 75 \text{ nmol/L}$) 1332 (33.4) 1310 (33.2) 22 (40.7) Risk allele frequencies vitamin D deficiency variants 1080 (40.9) 1066 (41.0) 0.66 CYP2R1 - GG (n,%) 14 (35.9) DHCR7 - GG (n,%) 460 (11.5) 455 (17.5) 5 (12.8) 0.12 GC - TT (n,%) 1459 (36.5) 0.51 1441 (55.4) 18 (46.2) 22 (56.4) 0.59 CYP24A1 - TT (n,%) 1538 (38.5) 1516 (58.2) HLA DQ2 and/ or DQ8 presence < 0.001 1105 (41.8) 1070 (41.1) 35 (89.7) (n,%)

Supplementary Table 1. Characteristics of the children and their mothers, for the total population and split by TG2A positivity (observed data)

Maternal characteristics ^b				
Maternal educational level (n,%)				
Low(≤secondary education)	1893 (52.2)	1874 (52.3)	19 (41.3)	0.14
High (≥higher education)	1736 (47.8)	1709 (47.7)	27 (58.7)	
Maternal smoking during pregnancy (n,%)	551 (15.9)	545 (15.9)	6 (15.0)	0.87
Maternal 25(OH)D serum				
concentrations second trimester	50.3 (27.3-76.0)	50.3 (27.3-76.1)	51.8 (25.0-75.5)	0.82
pregnancy (nmol/L; median, IQR)				

Values are frequencies (percentages), means (standard deviations (SD)) or medians (interquartile range (IQR)) from the observed dataset

^a p-values are calculated with the Chi-square test for categorical variables, Mann-Whitney U test for nonnormally distributed variables and Student's T test for continuous normal distributed variables and reflect differences between TG2A positive and negative groups. Fisher's exact test was obtained in case the expected count was less than five. A p-value <0.05 was considered significant.

^b Data was missing for birth weight (0.2%), ethnicity (2.6%), breastfeeding (36.3%), gluten introduction (33.2%), diet score (53.7%), vitamin D supplementation (37.0%), gastroenteritis past year (13.9%), BMI child at 6-year visit (0.2%), playing outside at 6 y (28.3%), 25(OH)D serum concentrations at birth (45.5%), genes associated with vitamin D deficiency (33.9%), HLA DQ2/DQ8 presence (33.8%), maternal smoking during pregnancy (13.4%), maternal 25(OH)D serum concentrations second trimester pregnancy (23.9%)

Supplementary Table 2. Associations between TG2A positivity (binary independent variable) and serum 25(OH)D concentrations (continuous dependent variable) at 6 years of age (crude data)

	25 (OH) D concentrations (nmol/L)				
TG2A concentrations U/ml	Crude model β (95% Cl)	Model 1 aβ (95% CI)	Model 2 aβ (95% CI)		
TG2A negative n=3940	Reference	Reference	Reference		
TG2A positive n=54	-2.20 (-9.73;5.33)	-2.50 (-9.05;4.06)	-3.09 (-12.20;6.02)		

Values (β's) are based on linear regression models and reflect between group differences in serum 25 (OH) D concentrations (nmol/L) at 6 years of age relative to the reference group.

*Denotes statistical significance (P < 0.05)

Model 1 was adjusted for season of blood draw (winter/spring and summer/autumn) and ethnicity (Western and non-Western). Model 2 was adjusted for season of blood draw, ethnicity, 25 (OH) D concentrations mother during pregnancy (nmol/L), birth weight (grams), gender, and breastfeeding exclusiveness (yes/no).

Supplementary Table 3. Associations between TG2A positivity (binary independent variable) and serum 25(OH)D concentrations (continuous dependent variable) at 6 years of age (imputed data)

	25 (OH) D concentrations (nmol/L)							
TG2A concentrations U/ml	Crude model β (95% Cl)	Model 1 aβ (95% CI)	Model 2 aβ (95% CI)	Model 3 aβ (95% CI)	Model 4 aβ (95% CI)	Model 5 aβ (95% CI)	Model 6 aβ (95% CI)	Model 7 aβ (95% CI)
TG2A negative n=3940	Reference	Reference	Reference	Reference	Reference	Reference	Reference	Reference
TG2A positive n=54	-2.20 (-9.72;5.33)	0.08 (-6.97;7.12)	-2.20 (-8.73;4.33)	0.06 (-6.92;7.04)	-0.10 (-3.69;3.49)	-0.13 (-7.12;6.92)	0.26 (-6.78;7.30)	-1.73 (-8.31;4.85)
25 (OH) D concentrations (nmol/L)								
TG2A concentrations U/ml among HLA DQ2 and/or HLA DQ8 positive children	Crude model β (95% Cl)	Model 1 aβ (95% Cl)	Model 2 aβ (95% CI)	Model 3 aβ (95% Cl)	Model 4 aβ (95% Cl)	Model 5 aβ (95% Cl)	Model 6 aβ (95% Cl)	Model 7 aβ (95% Cl)
TG2A negative n=1070	Reference	Reference	Reference	Reference	Reference	Reference	Reference	Reference
TG2A positive n=35	-1.17 (-10.43;8.09)	0.31 (-8.29;8.91)	-2.11 (-10.14;5.91)	0.30 (-7.76;8.36)	0.87 (-7.72;9.46)	0.35 (-8.29;8.98)	0.45 (-8.15;9.05)	-1.19 (-9.05;6.66)

Values (β's) are based on linear regression models and reflect between group differences in serum 25 (OH) D concentrations (nmol/L) at 6 years of age relative to the reference group.

Multivariable model 1 was adjusted for season of blood draw (winter/spring versus summer/autumn). Model 2 was adjusted for season of blood draw (winter/spring versus summer/autumn) and ethnicity (Western versus non-Western). Model 3 was adjusted for season of blood draw (winter/spring versus summer/autumn) and 25 (OH) D concentrations of the mother during pregnancy (nmol/L). Model 4 was adjusted for season of blood draw (winter/spring versus summer/autumn) and birth weight (grams). Model 5 was adjusted for season of blood draw (winter/spring versus summer/autumn) and birth weight (winter/spring versus summer/autumn) and breastfeeding exclusiveness (yes/no). Model 7 was adjusted for all covariates.

Supplementary Table 4. Associations between TG2A positivity (binary independent variable) and serum 25(OH)D concentrations (continuous dependent variable) at 6 years of age (crude data)

25 (OH) D concentrations (nmol/L)								
TG2A concentrations U/ml	Crude model	Model 1	Model 2	Model 3	Model 4	Model 5	Model 6	Model 7
	β (95% Cl)	aβ (95% CI)	aβ (95% CI)	aβ (95% CI)	aβ (95% Cl)	aβ (95% CI)	aβ (95% Cl)	aβ (95% Cl)
TG2A negative n=3940	Reference	Reference	Reference	Reference	Reference	Reference	Reference	Reference
TG2A positive	-2.20	0.08	-2.50	0.52	-0.10	-0.13	-1.12	-3.09
n=54	(-9.72;5.33)	(-6.97;7.12)	(-9.05;4.06)	(-7.24;8.28)	(-7.13;6.94)	(-7.18;6.92)	(-9.61;7.37)	(-12.20;6.02)

Values (β's) are based on linear regression models and reflect between group differences in serum 25 (OH) D concentrations (nmol/L) at 6 years of age relative to the reference group.

Multivariable model 1 was adjusted for season of blood draw (winter/spring versus summer/autumn). Model 2 was adjusted for season of blood draw (winter/spring versus summer/autumn) and ethnicity (Western versus non-Western). Model 3 was adjusted for season of blood draw (winter/spring versus summer/autumn) and 25 (OH) D concentrations mother during pregnancy (nmol/L). Model 4 was adjusted for season of blood draw (winter/spring versus summer/autumn) and birth weight (grams). Model 5 was adjusted for season of blood draw (winter/spring versus summer/autumn) and gender. Model 6 was adjusted for season of blood draw (winter/spring versus summer/autumn) and gender. Model 6 was adjusted for season of blood draw (winter/spring versus summer/autumn) and breastfeeding exclusiveness (yes/no). Model 7 was adjusted for all covariates.

Supplementary Table 5a. Associations between TG2A positivity (binary independent variable) and serum 25(OH)D concentrations (continuous dependent variable) at 6 years of age, selected by mean diet quality score <4.17 (imputed data)

	25 (OH) D concentrations (nmol/L)				
TG2A concentrations U/ml	<mark>Crude model</mark> β (95% Cl)	Model 1 aβ (95% CI)	Model 2 aβ (95% CI)		
TG2A negative n=925	Reference	Reference	Reference		
TG2A positive n=14	-7.84 (-23.07;7.38)	-5.14 (-19.41;9.14)	-3.75 (-17.13;9.63)		

Values (β's) are based on linear regression models and reflect between group differences in serum 25 (OH) D concentrations (nmol/L) at 6 years of age relative to the reference group.

Multivariable model 1 was adjusted for season of blood draw and ethnicity (Western versus non-Western). The main model was adjusted for season of blood draw (winter/spring versus summer/autumn), 25 (OH) D concentrations mother during pregnancy (nmol/L), birth weight (grams), gender, ethnicity (Western versus non-Western) and breastfeeding exclusiveness (yes/no).

Supplementary Table 5b. Associations between TG2A positivity (binary independent variable) and serum 25(OH)D concentrations (continuous dependent variable) at age 6 years, selected by mean diet quality score ≥ 4.17 (imputed data)

	25 (OH) D concentrations (nmol/L)				
TG2A concentrations U/ml	<mark>Crude model</mark> β (95% Cl)	Model 1 aβ (95% CI)	Model 2 aβ (95% CI)		
TG2A negative n=899	Reference	Reference	Reference		
TG2A positive n=10	9.09 (-7.70;25.88)	8.42 (-6.86;23.70)	8.06 (-7.20;23.32)		

Values (β's) are based on linear regression models and reflect between group differences in serum 25 (OH) D concentrations (nmol/L) at 6 years of age relative to the reference group.

Multivariable model 1 was adjusted for season of blood draw and ethnicity (Western versus non-Western). The main model was adjusted for season of blood draw (winter/spring versus summer/autumn), 25 (OH) D concentrations mother during pregnancy (nmol/L), birth weight (grams), gender, ethnicity (Western versus non-Western) and breastfeeding exclusiveness (yes/no).

Supplementary Table 6. Associations between TG2A positivity (binary independent variable) and serum 25(OH)D concentrations (continuous dependent variable) at age 6 years, tested for effect modification by risk allele variants for vitamin D deficiency (n=3994)(crude data)

	25 (OH) D concentrations (nmol/L)				
TG2A concentrations U/ml	Model 1 p-value for interaction	Model 2 p-value for interaction	Model 3 p-value for interaction	Model 4 p-value for interaction	
TG2A negative n=3940	0.33	0.68	0.62	0.25	

*A p-value <0.05 was considered significant.

Model 1 shows possible interaction between rs2282679 and TG2A concentrations. Model 2 shows possible interaction between rs6013897 and TG2A concentrations. Model 3 shows possible interaction between rs10741657 and TG2A concentrations. Model 4 shows possible interaction between rs12785878 and TG2A concentrations.