Source	Patient sample description	Comparison group description	Outcome measure	Prevalence estimates or Mean/SD	Main results
(A) STUDIES WTH A CONTROL GROUP					
Community Samples					
Sokal et al, 2004 (USA)[12]	$\mathrm{N}=100$. Men and women with SCZ or S-AFF	$\mathrm{N}=3052$. Matched for age/race/gender (15:1 ratio). From NHIS national survey dataset	Diabetes (ascertained from patient interview) - lifetime prevalence	SMI: Obs = 10/97 (10.3\%) Control: Obs $=167 / 2861$ (5.8\%)	Unadjusted OR = 1.98 (0.99 to 3.96); Adjusted OR $=1.98$ (0.95 to 4.10) *Calculated RR $=1.77$ (0.96 to 3.23)
Osborn et al, 2006 (UK: England) [8]	$\mathrm{N}=74$. Men and women with SCZ , S-AFF or N-ACP	$\mathrm{N}=148$. Men and women	Diabetes (recorded in GP records)	$\begin{aligned} & \text { SMI: Obs }=7 / 74 \text { (9.6\%) } \\ & \text { Control: Obs }=4 / 148 \text { (2.7\%) } \end{aligned}$	Unadjusted OR = 3.8 (1.1 to 13.3); Adjusted $\mathrm{OR}^{a}=3.7$ (0.9 to 15.4); Adjusted $\mathrm{OR}^{\mathrm{b}}=6.0$ (1.2 to 3.10) *Calculated $\mathrm{RR}=3.50$ (1.06 to 11.58)
			Hyperglycaemia (randomblood glucose $>11.0 \mathrm{mmol} / \mathrm{L}$)	SMI: Obs = $5 / 74$ (6.9\%) Control: Obs = 6/148 (4.1\%)	Unadjusted OR = 1.7 (0.5 to 5.9); Adjusted $\mathrm{OR}^{\mathrm{a}}=1.2$ (0.3 to 4.9); Adjusted $\mathrm{OR}^{b}=1.1$ (0.2 to 5.4)
			Mean random glucose levels ($\mathrm{mmol} / \mathrm{L}$)	SM: Mean $=6.1 \mathrm{mmol} / \mathrm{L}(\mathrm{SD} 3.5)$ Control: Mean $=5.3 \mathrm{mmol} / \mathrm{L}$ (SD 2.1)	$\begin{aligned} & \text { SMI > Controls: t-test:: F=-2.1, } p=.003 \\ & \text { *SMD }=0.302(0.02-0.583) \end{aligned}$
McEvoy et al, 2005 (USA) [47]	$\mathrm{N}=689$. Men and women with chronic SCZ	Compared to randomly selected population from the NHANES III study matched for age/race/gender ($\mathrm{N}=689$)	1). Mean fasting glucose ($\mathrm{mg} / \mathrm{dl}$) (no SD) 2). Met the glucose criterion for metabolic syndrome (>110mg/dl)	Males:SM1 mean =97.7, Control mean=102.4 Females: SMI mean=100.9 Control mean= 99.9 Males: SMI 14.1\%, Controls 14.2% Females SMI 21.7\% Controls 11.2\%	SMl<controls: t test $\mathrm{p}=0.034$ SMI=controls: t test $p=0.793$ SMI=controls: chi sq p=0.964 SMl>controls: chi sq $p=0.008$
Outpatient and Inpatient Samples					
Ourkendall et al, 2004 (USA) [14]	$\mathrm{N}=3022$. Men and women with SCZ Members of US health plans	$\mathrm{N}=12088$. Matched for age/gender (4:1 ratio). Randomly selected from same health databases	Diabetes diagnosis (ICD-9 Code 250) or prescriptions for oral antidiabetic medications or insulin	SMI: Prevalence $=91.7$ per 1000 Incidence $=7.0$ per 1000 person-years Control: Prevalence $=50.5$ per 1000 Incidence $=4.3$ per 1000 person-years	Prevalence: Unadjusted OR = 1.9 (1.6 to 2.2); Adjusted $\mathrm{OR}^{\mathrm{d}}=2.1$ (1.8 to 2.4) Incidence: Unadjusted RR = 1.6 (1.2 to 2.2); Adjusted $\mathrm{RR}^{\mathrm{d}}=1.8$ (1.2 to 2.6) *Calculated risk ratio $=1.82$ (1.58 to 2.08)
Enger et al, 2004 (USA) [8]	$\mathrm{N}=$ 1920. Men and women with SCZ Members of US health plan	$\mathrm{N}=9600$. Matched for age/gender (5:1 ratio). Identified from same health plan database	Diabetes diagnosis (ICD-9 Code 250) or at least one dispensing of anti-diabetic drug	SMI: Obs = 105 events Rate $=3464$ per 100,000 person-years Control: Obs = 201 events Rate $=1380$ per 100,000 person-years	Adjusted rate ratio $=1.75$ (1.38 to 2.21) *Calculated risk ratio $=2.00$ (1.62 to 2.46)
Kilbourne et al, 2004 (USA) [16]	$\mathrm{N}=4310$. Men and women with BPAD from National US Veterans cohort	$\mathrm{N}=3408760$. Men and women. From same Veterans cohort	Diabetes diagnosis (ICD-9)	SMI: Obs = $743 / 4310$ (17.2\%) Control: Obs = 532926/3408760 (15.6\%)	None reported *Calculated risk ratio $=1.10$ (1.03 to 1.18)
Inpatient Samples					
Finney, 1989 (Sweden) [17]	Search of inpatient register (1969-1983) to identify conscripts ($\mathrm{N}=621074$) with diabetes diagnosis and SCZ All males aged under 27 years	Members of same conscript cohort (National Enrolment Register 1969-1979) with diabetes diagnosis but no SCZ. All males aged under 27 years	Juvenile onset diabetes (ICD Code 250)	Diabetics with schizophrenia: Obs $=0 ;$ Exp $=4$ Diabetics without schizophrenia: Obs $=1154$ cases $($ Rate $=1.9$ per 1000) General population rates (1969-1983): For age 0-19 $=0.2$ per 1000	None reported
Makikyro et al, 1998 (Finland) [18]	$\mathrm{N}=89$. Members of 1966 Birth Cohort with SCZ. Followed up 1982-1994. No gender information	$\mathrm{N}=10630$. Members of same Birth Cohort with no history of psychiatric disorder. Men and women	Diabetes mellitus (hospitaltreated cases): ICD-8 and ICD-9	$\begin{aligned} & \text { SM: Obs = 0/89 (0\%) } \\ & \text { Control: Obs = 78/10630 (0.7\%). } \end{aligned}$	None reported *Calculated risk ratio $=0.75$ (0.05 to 12.04)
Ryan et al, 2003 (Finland) [19]	$\mathrm{N}=26$. Men and women with SCZ. First-episode and drug-naïve	$\mathrm{N}=26$. Men and women	Impaired glucose tolerance ($>110 \mathrm{mg} / \mathrm{dll}$ and $<125 \mathrm{mg} / \mathrm{dl}$) Mean fasting blood glucose ($\mathrm{mg} / \mathrm{dL}$)	$\begin{aligned} & \text { SM: 4/26 (15.4\%) } \\ & \text { Control: 0/26 (0\%) } \\ & \text { SM: Mean = } 95.8 \text { (SD 16.9) } \\ & \text { Control: } \text { Mean = } 88.2 \text { (SD 5.4) } \end{aligned}$	None reported *Calculated risk ratio $=9.00$ (0.51 to 159.15) SMI > Controls (t-test, p<.03) *SMD $=0.606$ (0.049 to 1.162)
Saari et al, 2005 (Finland) [20]	$N=31$. Men and women with SCZ. Members of 1966 Birth Cohort followed up in 1997/1998	$N=5455$. Men and women with no history of psychiatric treatment. From same 1966 Birth Cohort	Fasting blood glucose ≥ 110 $\mathrm{mg} / \mathrm{dL}$	$\begin{aligned} & \text { SMI: Obs = 0/31 (0\%) } \\ & \text { Control: Obs = 157/5455 (3\%) } \end{aligned}$	None reported *Calculated risk ratio $=0.54$ (0.03 to 8.50)
Arranz et al, 2004 (Spain) [21]	Men and women with SCZ Antipsychotic-free group: $\mathrm{N}=50$ Antipsychotic-naive group: $\mathrm{N}=50$ (first psychotic episode)	$\mathrm{N}=50$. Men and women. Hospital staff with no history of SCZ or medication affecting glucose homeostasis	Mean fasting blood glucose ($\mathrm{mmol} / \mathrm{L}$)	Antipsychotic-free: Mean $=4.47$ (SD 0.08) Antipsychotic-naïve: Mean $=4.33$ (SD 0.05) Control group: Mean $=4.22($ SD 0.08 $)$	No significant differences-ANCOVA', p=. 21 *SMDs Antipsychotic-free $=3.125$ (2.538 to 3.712) Antipsychotic-naïve $=1.649$ (1.194 to 2.104)

TABLE 1: DIABEIES AND HYPERGLYCAEMA PAPERS (continued)
(B) STUDIES COMPARING PATIENTS WITH SM TO NORMATIVE DATA

(B) STUDIES COMPARING PATIENTS WTH SM TO NORMATIVE DATA					
Source	Patient sample description	Comparison group description	Outcome measure	Prevalence estimates or Mean/SD	Main results
Outpatient Samples					
Lamberti et al, 2004 (USA) [22]	$\mathrm{N}=$ 196. Patients with SCZ . No gender information	Compared to general population rate for comparable age groups (data from Mokdad et al, 2001)	Diagnosis of diabetes (medical chart review)	SMI: Obs = 27/196 (13.8\%) General population rate: 7.3\%	None reported. *Calculated risk ratio $=1.89$
Dickerson et al, 2002 (USA) [23]	$\mathrm{N}=43$. All females, with SCZ or S-AFF	$\mathrm{N}=101$. Age-range matched females from Maryland Behavioural Risk Factor Survey (BFRS) 1999 dataset	Diabetes (ever) - self-reported in interview using BRFS tool	SMI: Obs = 6/43 (14\%) (Cl: 5 to 28\%) Controls: Obs = 8/101 (8\%) (Cl: 6 to10\%)	None reported *Calculated risk ratio $=1.90$ (0.70 to 5.16)
Outpatient and Inpatient Samples					
Casadebaig et al, 1997 (France) [24]	N = 3470. Men and women with SCZ	Compared to INSEE-CREDES 1991 general population survey data.	Treatment for diabetes (ICD-9 Code 250)	SM: Males Obs =24; Females: $\mathrm{Obs}=30$ Controls: No prevalence estimates reported	Standardised Morbidity Ratio Male SMR = 4.0 (Chi square $\mathrm{p}<.05$) Female SMR = 2.0 (Chi square p<05).
Dixon et al, 2000 (USA) [25]	(i) Field Study (1994-96): $\mathrm{N}=719$. Men and women with SCZ. (ii) Medicaid Data (1991): $\mathrm{N}=6066$. Men and women with SCZ, S-AFF or SFD. (iii) Medicare Data (1991): $\mathrm{N}=14182$. Men and women with SCZ, S-AFF or SFD	Compared to general population selfreported rates from National Health Interview Survey (NHIS 1994) - Adams \& Marano, 1995	Field Study. Self-reported diabetes: lifetime and current. Medicaid/Medicare Data: Any diabetes-related claim	SMI: (i) Field Study: Lifetime diabetes: 107/719 (14.9\%); Current diabetes: 78 cases (10.8\%); (ii) Medicaid claims: 673/6066 (11.1\%). Age 18-44 = 6.7\%; Age 45-64 = 18.8\% (iii) Medicare: claims: $1766 / 14182$ (12.5\%). Age 18-44 = 5.6\%; Age 45-64 = 14.9\% Cited general population rates: Age 18-44 = 1.2\%; Age 45-64 = 6.3\%	None reported *Calculated risk ratio $=4.67$ (age 18-44 yrs) *Calculated risk ratio $=2.36$ (age 45-64 yrs)
$\begin{aligned} & \text { Susce et al,2005 } \\ & \text { (USA) [46] } \end{aligned}$	$\mathrm{N}=560$. Men and women with SCZ , S AFF, BPAD, DEP	Compared to Kentucky general population (percentages not raw data)	Diagnosis of diabetes (medical chart revien)	$\begin{aligned} & \text { SMI:Obs }=101 / 560(18 \%) \\ & \text { Controls }=7 \% \end{aligned}$	Reported OR: 2.9 (95\%Cl=2.3to 3.6) *Calculated risk ratio=2.57
Inpatient Samples					
Lilliker, 1980 (USA)[26]	$\mathrm{N}=1134$. Patients with SCZ discharged 1973-1978. No gender information	Compared to general population data from National Health Survey 1960/62	Diabetic diet recorded in dietary records	SM: Obs = 38/1134 (3.3\%) General population rate $=1.8 \%$	None reported
Regenold et al, 2002 (USA) [27]	$\mathrm{N}=71$. Men and women with SCZ. Older Adults (age 50-74 yrs)	Compared to general population survey data for age, race and gender matched rates (NHANES III study)	Diagnosis of Diabetes Type 2 or prescription for insulin or oral hypoglycaemics (chart review)	SMI: Obs = 9/71 (13\%) General population rate $=15 \%$ (matched controls)	None reported *Calculated risk ratio $=0.84$
Hung et al, 2005 (Taiwan) [28]	$\mathrm{N}=246$. Men and women with SCZ	Compared to general population rates based on data from Lu et al (1998).	Diagnosis of diabetes (on fasting plasma glucose > $126 \mathrm{mg} / \mathrm{dL}$)	SMI: Obs = 24/246 (9.8\%) General population: Obs = 120/1534 (7.8\%)	None reported *Calculated risk ratio $=1.25$ (0.822 to 1.893)
Regenold et al, 2002 (USA) [27]	$\mathrm{N}=20$. Men and women with S-AFF. Oder Adults (age 50-74 yrs)	Compared to general population survey data (age, race and gender matched rates - NHANES III study)	Diagnosis of Type 2 Diabetes or prescription of insulin or oral hypoglycaemics (chart review)	$\begin{aligned} & \text { SMI: Obs }=10 / 20(50 \%) \\ & \text { General population rate }=10 \% \text { (matched controls) } \end{aligned}$	None reported *Calculated risk ratio $=5.0$
Cohen et al, 2003 (Netherlands) [29]	$\mathrm{N}=93$. Men and women with SCZ or S-AFF	Compared to Dutch general population rates (Nivel, 1999 study)	Diabetes Mellitus Type 2 (nonfasting blood glucose >11.0 mmol $/ \mathrm{L}$)	SMI: Observed rate $=7.5 \%$ General population rate $=1.9 \%$	$\begin{aligned} & \hline \mathrm{OR}=4.288(\mathrm{Cl} 1.979 \text { to } 9.289) \\ & \text { *Calculated risk ratio }=3.95 \end{aligned}$
Lilliker, 1980 (USA)[26]	Study 1: $\mathrm{N}=$ 203. Men and women with BPAD. Study 2: $N=129$. Patients with BPAD discharged 1973-1978. No gender information.	Study 1: Compared to general population rates from National Health Survey 1960/62 (N=6692). Study 2: Compared to inpatients discharged 1973-1978 with 'other' diagnoses (including SCZ).	Study 1: Diagnosis of diabetes recorded in notes Study 2: Diabetic diet noted in dietary records	Study 1: Diagnosed cases (note review): Bipolar: Obs = 20/203 (9.85\%) Males $=4 / 79$ (5.06\%); Females $=16 / 124$ (12.9\%) General population rate (expected) $=1.8 \%$ Study 2: Based on dietary records: Bipolar: Obs = 16/129 (12.4\%) Other diagnoses: Obs = 121/4379 (2.8\%)	None reported *Calculated risk ratio $=5.47$
Cassidy et al, 1999 (USA) [30]	N= 345. Men and women with BPAD	Compared with general population norms	Diagnosis of diabetes (from medical history review) - Type I or Type II	SNI (matched sample): Obs = 34/345 (9.9\%) SMI (unmatched sample): Obs = 36/357 (10.1\%) Expected rate (from US norms) $=3.5 \%$	None reported *Calculated risk ratio $=2.83$

TABLE 1: DIABEIES AND HYPERGLYCAEMA PAPERS (Continued)

Source	Patient sample description	Comparison group description	Outcome measure	Prevalence estimates or Mean/SD	Main results
Inpatient samples (continued)					
Regenold et al, 2002 (USA) [27]	$\mathrm{N}=53$. Men and women with BPAD. Oder Adults (age 50-74 yrs)	Compared to general population survey data (age, race and gender matched rates - NHANES III study)	Diagnosis of Type 2 Diabetes or prescription of insulin or oral hypoglycaemics (chart review)	$\begin{aligned} & \text { SMI: Obs }=14 / 53(26 \%) \\ & \text { General population rate }=13 \% \text { (matched cases) } \end{aligned}$	None reported *Calculated risk ratio $=2.03$
Regenold et al, 2002 (USA) [27]	$\mathrm{N}=144$. Men and women with SCZ, S AFF or BPAD. Older Adults (age 50-74 years)	Compared to general population survey data (NHANES III study)	Diagnosis of Type 2 Diabetes or prescription for insulin or oral hypoglycaemics (chart review)	$\begin{aligned} & \text { SMI: Obs }=33 / 144(22.9 \%) \\ & \text { General population rate }=14 \% \end{aligned}$	None reported
Cohen et al, 2003 (Netherlands) [29]	$\mathrm{N}=93$. Men and women with SCZ or S-AFF	Compared to general population rates by age group (Hoorn, 1995 study)	Hyperglycaemia (non-fasting blood glucose >7.8 and < 11.0 $\mathrm{mmol} / \mathrm{L}$)	SM: Obs = 11/93 (11.83\%) Age 20-49 = 15.2\%; Age 50-59 = 13.0\% General population rates: Age $20-49=5.7 \%$; Age $50-59=6.3 \%$	$\begin{aligned} & \text { Age 20-49 years: } \\ & \mathrm{OR}=2.959 \text { (Cl } 1.230 \text { to } 7.119 \text {) } \\ & \text { Age } 50-59 \text { years } \\ & \mathrm{OR}=2.220 \text { (Cl } 0.0644 \text { to } 7.650 \text {) } \\ & \hline \end{aligned}$
Long Stay Samples					
Mukherjee et al, 1996 (Italy) [31]	N= 95. Men and women with SCZ	Compared to general population data from 2 studies - Verriollo et al (1985) and Bruno et al (1992)	Diagnosis of diabetes - record of OGTT fasting plasma glucose > $140 \mathrm{mg} / \mathrm{dL}$ on ≥ 2 occasions	SMI: Obs = 15/95 (15.8\%) (CI 12.1\% to 19.5\%) General population rates: $1985 \text { data }=3.2 \% ; 1992 \text { data }=2.1 \%$	None reported *Calculated risk ratio $=4.93$
Subramaniam et al, 2003 (Singapore) [32]	$\mathrm{N}=$ 194. Men and women with SCZ	Compared to prevalence rates for general population (National Health Survey Singapore 1998)	Prevalence of diabetes (via OGTT using W-OO criteria)	SMI: Obs = 31/194 (16\%) General population rate $=9 \%$	None reported *Calculated risk ratio $=1.77$
			Impaired glucose tolerance (via OGTT using W-OO criteria)	SM: Obs = 60/194 (30.9\%) General population rate $=15 \%$	None reported
(C) STUDIES COMPARING PATIENTS WMTH SM TO PATIENTS WTH OTHER DIAGNOSES					
Community Samples					
Chafetz et al, 2005 (USA) [33]	$\mathrm{N}=271$. Men, women and transgender with SCZ or S-AFF	$\mathrm{N}=510$. Men and women with 'other' diagnoses (including BPAD)	Diabetes (ascertained from nursing notes)	SCZ/S-AFF group: Obs = 20/271 (7.4\%) 'Other diagnoses' group: Obs = 16/510 (3.1\%)	None reported *Calculated risk ratio $=2.35$ (1.239 to 4.464)
Outpatient Samples					
Gierz \& Jeste, 1993 (USA) [34]	$\mathrm{N}=30$. Men and women with $\mathrm{SCZ}-$ predominantly male. Ederly veterans: mean age 67.6 yrs (SD 6.5)	$N=26$. Men and women with DEP from same clinic. Elderly veterans: mean age 66.5 yrs (SD 4.5). Aso cite population rates for age >65 years (Schick, 1986).	Diabetes mellitus (ascertained from chart review, computerised profiles, prescription records)	SCZ group: Prevalence rate $=16.7 \%$ DEP group: Prevalence rate $=15.4 \%$ Cited population norms: Rate $=8.3 \%$	None reported *Calculated risk ratio $=2.01$
Lamberti et al, 2004 (USA) [22]	$\mathrm{N}=$ 196. Patients with SCZ . No gender information	$\mathrm{N}=240$. Patients with other psychiatric diagnoses (including S-AFF, BPAD, DEP and other psychotic disorders)	Diagnosis of diabetes (medical chart review)	Schizophrenia group: Obs = 27/196 (13.8\%) 'Other diagnoses' group: Obs = 35/240 (14.6\%)	None reported
Inpatient Samples					
Kessing et al, 2004 (Denmark)[35]	$\mathrm{N}=6706$. Men and women with BPAD. Excluded patients with an existing diagnosis of diabetes	(a) $N=108525$ patients with osteoarthritis. Men and women (b) $\mathrm{N}=29035$ patients with DEP. Men and women	Diagnosis of diabetes during study period: ICD-8 (Codes 249.00-250.09) or ICD-10 (Codes DE10.O-DE11.9)	Bipolar: Obs = 101/6706 (1.51\%) Osteoarthritis: Obs = 1980/108525 (1.82\%) $D E P:$ Obs $=358 / 29035$ (1.23\%)	None reported *Calculated risk ratio $=1.22$ (0.981 to 1.521) - compared to Depression *Calculated risk ratio $=0.83$ (0.677 to 1.007) - compared to Osteoarthritis
Long Stay Samples					
Steinert et al, 1996 (Germany) [36]	$\mathrm{N}=90$. Men and women with SCZ or S-AFF	$\mathrm{N}=90$. Men and women with DEP.	Diabetes mellitus (unclear how ascertained from notes)	SMI: Males: Obs = 3/43 (7\%) Females: Obs = 8/47 (17\%) Non-SMI: Males: Obs = $2 / 43$ (4.7\%) Females: Obs = 3/47 (6.4\%)	None reported *Calculated risk ratio $=2.2(0.796$ to 6.076$)$

 days, diabetes, anti-angina medications, anti-hypertensive medication; ${ }^{\dagger}$ Controlling for age, $B M 1$, sex and family history of diabetes; * If odds ratios or risk ratios are not reported in papers, risk ratios have been calculated wherever possible.
 Tolerance Test. Obs=observations

TABLE 2: HYPERTENSION PAPERS

Source	Patient sample description	Comparison group description	Outcome measure	Prevalence estimates or Mean/SD	Main results
(A) STUDIES WITH A CONTROL GROUP					
Community Samples					
Sokal et al, 2004 (USA)[12]	$\begin{aligned} & N=97 \text {. Men and women with SCZ } \\ & \text { or S-AFF } \end{aligned}$	$\mathrm{N}=2861$. Matched for age, race and gender ($15: 1$ ratio). Randomly selected from national survey datasets	Lifetime prevalence of hypertension-self-reported in face to face interview	SM: Obs = 24/97 (24.7\%) Control: Obs $=673 / 2861$ (23.6\%)	$\begin{aligned} & \text { Unadjusted } O R=1.09(0.67 \text { to } 1.77) \\ & \text { Adjusted } \mathrm{OR}^{a}=1.04(0.62 \text { to } 1.74) \\ & \text { Adjusted } \mathrm{OR}^{p}=1.05(0.64 \text { to } 1.71) \\ & \text { *Calculated risk ratio }=1.05 \text { (} 0.74 \text { to } 1.50 \text {) } \\ & \hline \end{aligned}$
Osborn et al, 2006 (UK: England)[13]c	$\mathrm{N}=74$. Men and women with SCZ , S-AFF or N-ACP	$\mathrm{N}=148$. Men and women	Prevalence of hypertension (Systolic $B P>160$ or Diastolic BP > 95 mmHg)	$\begin{aligned} & \hline \text { SMI Obs }=9 / 74(12.2 \%) \\ & \text { Control: Obs = 19/148 (12.8\%) } \end{aligned}$	Unadjusted OR $=0.9$ (0.4 to 2.2) Adjusted OR $=0.7$ (0.3 to 1.8) Adjusted $\mathrm{OR}^{\mathrm{e}}=0.5$ (0.4 to 2.2) *Calculated risk ratio $=0.95$ (0.45 to 1.99)
Outpatient and Inpatient Samples					
Curkendall et al, 2004 (USA) [14]	$\mathrm{N}=$ 3022. Men and women with SCZ	$\mathrm{N}=12088$. Men and women. Age and sex matched (4:1 ratio). Randomly selected from health databases	Prevalence of hypertension (ICD-9 Code 401 to 405)	SMI: Obs = 414/3022 (13.7\%) Control: Obs = 2019/12088 (16.7\%)	No OR reported *Calculated risk ratio $=0.82$ (0.74 to 0.90)
McEvoy et al, 2005 (USA) [47]	$\mathrm{N}=687$. Men and women with chronic SCZ	Compared to population from NHANES III study matched for age/race/gender ($\mathrm{n}=687$)	1) Met metabolic syndrome blood pressure criteria 2).Mean systolic BP (mmHg) No SD 3). Mean diastolic $\mathrm{BP}(\mathrm{mmHg})$ No SD	Male: SMI: 47.2\% of 508; controls: 31.1% Female: 46.9% of 179; controls: 26.8% Male: SMI: 124 mmHg ; Control= $=123.4$ Female: SMI: 122 mmHg ; Control $=119$ Male; SMI: 79 mmH ; Control $=77$ Female; SM1: 80 mmHg ; Control: 73	No OR Reported; *calculated risk ratio for males and females combined $=1.57$ (1.37-1.81) $\mathrm{SM}=$ controls T test: $\mathrm{p}=0.295$ SMI=controls T test: $\mathrm{p}=0.063$ SMI>controls T test: $p=0.000$ SMI>controls T test: $p=0.000$
Kilbourne et al, 2004 (USA)[16]	$\mathrm{N}=4310$. Men and women with BPAD or cyclothymia. US Veterans.	$\mathrm{N}=3408760$. National Veterans cohort. Demographically similar to patient group	Prevalence of hypertension (ICD-9 - codes not specified)	SMI: Obs $=1500 / 4310(34.8 \%)$ Control: Obs $=1256034 / 3408760(36.8 \%)$	No OR reported *Calculated risk ratio $=0.94$ (0.91 to 0.98)
Inpatient Samples					
Saari et al, 2005 (Finland) [20]f	$\mathrm{N}=31$. Men and women with SCZ. All in early 30's (1966 Birth Cohort)	$\mathrm{N}=5455$. Men and women from same birth cohort.	Prevalence of hypertension ($\mathrm{BP} \geq$ $130 / 85 \mathrm{mmHg}$)	SMI: Obs = 15/31 (48\%) Control: Obs = 2209/5455 (40\%)	No OR reported *Calculated risk ratio $=1.19$ (0.83 to 1.72)
(B) STUDIES COMPARING PATIENTS WTH SM TO NORMATIVE DATA					
Outpatient Samples					
Dickerson et al, 2002 (USA)[23]	$\mathrm{N}=43$. Females with SCZ or SAFF. Age 40-70 years.	$\mathrm{N}=101$. Age-matched females from Maryland Behavioural Risk Factor Survey (BRRS) 1999 dataset	Prevalence of hypertension - selfreported in interview (using BFRS)	$\begin{aligned} & \hline \text { SMI: Obs }=16 / 43 \text { (37\%) (CI: } 7 \%-53 \%) \\ & \text { General population rate }=28 \%(\mathrm{Cl}: 24 \%-31 \%) \end{aligned}$	No OR reported *Calculated risk ratio $=1.33$
Outpatient and Inpatient Samples					
$\text { Casadebaig et al, } 1997$ (France)[24]	$\mathrm{N}=3470$. Men and women with SCZ	Men and women from INSEECREDES 1991 survey dataset (representative sample of French general population)	Prevalence of hypertensive disease (ICD-9 Codes 401-405)	SMI Males: Obs = 51 cases SMI Females: Obs $=33$ cases Comparison group rates not reported	Standardised Morbidity Ratios (no CI reported): Male SMR = 2.0; Female SMR = 0.5
Cohn et al, 2004 (Canada) [37]f	$\begin{aligned} & \mathrm{N}=240 \text {. Men and women with SCZ } \\ & \text { or S-AFF } \end{aligned}$	General population rates from Canadian Heart Health Survey (1986-1990)	Prevalence of hypertension (BP \geq $135 / 85 \mathrm{~mm} \mathrm{Hg}$ or current treatment with antihypertensive medication)	Presented as graphs - exact values not given in table or text.	No OR reported
$\begin{aligned} & \text { Susce et al,2005 } \\ & \text { (USA) [46] } \end{aligned}$	$\mathrm{N}=560$. Men and women with SCZ , S-AFF, BPAD, DEP	Compared to Kentucky general population prevalence; no raw data	Prevalence of hypertension from medical charts	$\begin{aligned} & \text { SMI: obs 151/560=27\% } \\ & \text { Control =30\% } \end{aligned}$	$\begin{aligned} & \mathrm{OR}=0.86,95 \% \mathrm{Cl}=0.71 \text { to } 1.03 \text {) } \\ & \text { *Calculated risk ratio=0.9 } \end{aligned}$

Source	Patient sample description	Comparison group description	Outcome measure	Prevalence estimates or Mean/SD	Main results
Inpatient Samples					
Yates \& Wallace, 1987 (USA) [38]c	$\mathrm{N}=50$. Men and women with BPAD. Study excluded non-white patients	Expected rates derived from general population data for age- and genderspecific controls (NHANES II Survey data 1971-75).	Prevalence of hypertension-defined as: (1) Patient history or physician diagnosis of hypertension; (2) Use of antihypertensive medication; (3) mean $\mathrm{BP}>160 / 95 \mathrm{mmHg}$ Aso report mean systolic and diastolic BP (with 95\% CI)	$\begin{aligned} & \text { Obs = 14/50 (28\%); Exp =5.6 (11.2\%) } \\ & \text { Males: Obs = 7/25 (28\%); Exp = 3.0 (12\%) } \\ & \text { Females: Obs }=7 / 25(28 \%) ; \text { Exp }=2.6 \\ & (10.4 \%) \\ & \\ & \text { Mean SBP }=128.7(124.1-132.33) \\ & \text { Males }=123.7(117.3-130.00) \\ & \text { Females }=133.8(127.8-139.0) \\ & \text { Mean DBP }=81.0(77.9-84.1) \\ & \text { Males }=79.5(75.4-83.6) \\ & \text { Females }=82.5(77.6-87.4) \end{aligned}$	None reported *Calculated risk ratio $=2.5$
Long Stay Samples					
Steinert et al, 1996 (Germany)[36]c	$\mathrm{N}=90$. Men and women with SCZ or S-AFF. Age range 41-90 years	Data from German DHP Studie (1988) - Men and women, aged 4070 years.	Mean systolic and diastolic blood pressure (with SD)	SMI: Male $=126.8$ (11.3)/79.3 (7.1) Female $=127.2$ (15.4)/78.2 (5.9) General population data: Male $=139.2$ (19.5)/85.4 (11.9) Female $=136.0$ (15.8)/82.0 (11.2)	None reported
(C) STUDIES COMPARING PATIENTS WMTH SM TO PATIENTS WUTH OTHER DIAGNOSES					
Community Samples					
Chafetz et al, 2005 (USA) [33]	$\begin{aligned} & N=271 \text {. Men and women with SCZ } \\ & \text { or S-AFF } \end{aligned}$	$\mathrm{N}=510$. Men and women. Patients with other psychiatric diagnoses	Prevalence of hypertension (derived from nurse records)	SM1: Obs = 39/271(14.4\%) Other diagnoses: Obs = 56/510 (11.0\%)	No OR reported *Calculated risk ratio $=1.31$ (0.90 to 1.92)
Outpatient Samples					
Gierz \& Jeste, 1993 (USA)[34]	$\mathrm{N}=30$. Ederly men and women with SCZ. From US Veterans clinic: mean age 67.6 yrs (SD 6.5)	$\mathrm{N}=26$. Ederly men and women with DEP from same clinic: mean age $=66.5 \mathrm{yrs}($ SD 4.5 $)$	Prevalence of hypertension (derived from chart/records review)	SMI: Observed rate $=26.7 \%$ DEP: Observed rate $=46.2 \%$ General population rate: Over 65 years $=$ 37.9%	No OR reported *Calculated risk ratio $=0.58$ (vs Depression) *Calculated risk ratio $=0.70$ (vs gen popn)
Long Stay Samples					
Steinert et al, 1996 (Germany) [36]c	$\mathrm{N}=90$. Men and women with SCZ or S-AFF. Age range $=41-90$ years	$\mathrm{N}=90$. Men and women with DEP. Age range 39-88 years	Prevalence of hypertension definition unclear. Also report mean systolic and diastolic blood pressure (with SD)	SMI: Males - Obs = 3/43 (7\%) Females - Obs $=5 / 47$ (10.6\%) DEP: Males - Obs $=2 / 43$ (4.7\%) Females - Obs $=2 / 47$ (4.3\%) Mean SBP/DBP SMI: Male = 126.8 (11.3)/79.3 (7.1) Female $=127.2$ (15.4)/78.2 (5.9) DEP: Male $=123.2(15.3) / 76.7$ (8.5) Female $=124.6$ (15.9)/78.0 (9.3)	None reported. *Calculated risk ratio $=2.00$ (0.62 to 6.41)

 or risk ratios are not reported in papers, risk ratios have been calculated wherever possible

TABLE 3: DYSUPIDEMA PAPERS

Source	Patient sample description	Comparison group description	Outcome measure	Prevalence estimates or Mean/SD	Main results
(A) STUDIES WMTH A CONTROL GROUP					
Community Samples					
Osborn et al, 2006 (UK: England) [13]c	$\mathrm{N}=74$. Men and women with SCZ, S-AFF or N-ACP	$\mathrm{N}=148$. Men and women	Prevalence of raised total cholesterol (> $5.1 \mathrm{mmol} / \mathrm{L}$)	$\begin{aligned} & \hline \text { SMI: Obs = 41/74 (56.2\%) } \\ & \text { Control: Obs }=73 / 148 \text { (49.3\%) } \end{aligned}$	Unadjusted $\mathrm{OR}=1.3$ (0.7 to 2.5) Adjusted OR=1.4 (0.8 to 2.5 $)^{\text {b }}$ Adjusted OR $=1.9$ (0.9 to 3.9$)^{\text {c }}$
			Prevalence of low HDL cholesterol ($<1.0 \mathrm{mmol} / \mathrm{L}$)	SMI: Obs $=12 / 74$ (16.7\%)	Unadjusted OR=4.0 (1.5 to 10.7)
				Control: Obs = $7 / 148$ (4.8\%)	Adjusted OR $=3.9$ (1.4 to 10.8) ${ }^{\text {b }}$ Adjusted OR=2.2 (0.7 to 7.6) ${ }^{\text {c }}$
			Prevalence of high total/HDL cholesterol ratio	SMI: Obs $=43 / 74$ (59.7\%)	Unadjusted OR=1.8 (1.0 to 3.2).
				Control: Obs = 66/148 (44.9\%)	Adjusted OR $=1.7(0.9 \text { to } 3.0)^{\text {b }}$ Adjusted OR=1.3(0.7 to 2.6) c
			Mean total cholesterol ($\mathrm{mmol} / \mathrm{L}$)	$\begin{aligned} & \text { SMI: Mean = } 5.41 \text { (SD 1.3) } \\ & \text { Control: Mean =5.3 (SD 1.3) } \end{aligned}$	*Standardised mean diff $=0.08$ (-0.20 to 0.36)
			Mean HDL cholesterol ($\mathrm{mmol} / \mathrm{L}$)	$\begin{aligned} & \text { SMI: } \text { Mean }=1.4 \text { (SD 0.45) } \\ & \text { Control: } \text { Mean }=1.6 \text { (SD 0.48) } \end{aligned}$	*Standardised mean diff $=-.42$ (-0.71 to -0.14)
			Mean LDL cholesterol ($\mathrm{mmol} / \mathrm{L}$)	SMI: Mean $=2.98$ (SD 1.05) Control: Mean $=2.98$ (1.12)	*Standardised mean diff $=0(-0.30$ to 0.30$)$
			Mean triglycerides ($\mathrm{mmol} / \mathrm{L}$)	SMI: Mean $=2.5$ (SD 1.7) Control: Mean = 1.8 (SD 1.5)	*Standardised mean diff $=0.47(0.16$ to 0.73$)$
			Mean tota//HDL cholesterol ratio	SMI: Mean $=4.3$ (SD 1.5) Control: Mean = 3.7 (SD 1.3)	*Standardised mean diff $=0.44$ (0.15 to 0.72)
McEvoy et al, 2005 (USA) [47]	$\mathrm{N}=687$. Men and women with chronic SCZ	Compared to population from NHANES III study matched for age/race/gender ($\mathrm{n}=687$)	Met metabolic syndrome criteria for HDL cholesterol (mg/dl)	Males; SMI 48.9\% Control 31.9\% Females SMI 63.3\% Controls 36.3\%	SMI>Controls Chi Sq P=0.000 SMIl>controls Chi Sq P=0.001
			Met metabolic syndrome triglyceride ($\mathrm{mg} / \mathrm{dll}$) criteria	Males: $\mathrm{SM}=50.7 \%$ Contols $=32.1 \%$ Females; SMI=42.3\% Controls=19.6\%	SMIl>controls Chi Sq P=0.000 SMIl>controls Chi Sq P=0.000
			Mean HDL cholesterol (mg/dl) [fasting]	Males: $\mathrm{SM} 1=42.3 \mathrm{mg} / \mathrm{dl}$; Controls $=47.2$ (No SD) Females: $S M 1=47.7$; Controls: 55.2 (No SD)	SM1<controls T test $\mathrm{P}=0.000$ $\mathrm{SM} /<$ controls T test $\mathrm{P}=0.000$
			Mean triglycerides ($\mathrm{mg} / \mathrm{dll}$) [fasting]	Males: $\mathrm{SM} 1=194.7$ Conrtols=143.6 (No SD) Females: $\mathrm{SM} 1=173.8$, Controls=118.9 (No SD)	SMI>controls T test $\mathrm{P}=0.000$ SMI $>$ controls T test $\mathrm{P}=0.000$
Outpatient and Inpatient Samples					
Curkendall et al, 2004 (USA)[14]	$\mathrm{N}=3022$. Men and women with SCZ	$\mathrm{N}=12,088$. Age and sex matched to patients (4:1 ratio). Randomly selected from health databases	Prevalence of disorders of lipid metabolism (ICD-9 Code 272) or claims for antilipemic medication	SMI: Rate = 5.4\% Control: Rate $=6.3 \%$	No OR reported *calculated risk ratio $0.86(0.73,1.01)$
Kilbourne et al, 2004 (USA)[16]	$\mathrm{N}=4310$. Men and women with BPAD. US Veterans.	$N=3408760$. National Veterans cohort. Demographically similar to patient group.	Prevalence of hyperlipidemia (ICD9 , codes not specified)	SMI: Obs = 973/4310(22.6\%) Control: No lipid data presented	No OR reported

Inpatient Samples					
Source	Patient sample description	Comparison group description	Outcome measure	Prevalence estimates or Mean/SD	Main results
Saari et al, 2005 (Finland) [20]d	$\mathrm{N}=31$. Men and women with SCZ. All in early 30's (1966 Birth Cohort followed up 1997/98)	$N=5455$. Men and women from same birth cohort without history of psychiatric treatment	Prevalence of low HDL cholesterol ($<40 \mathrm{mg} / \mathrm{dL}$ in men; < $50 \mathrm{mg} / \mathrm{dll}$ in women)	SMI: Obs = 5/31(16\%) Control: Obs = 588/5455 (11\%)	No OR reported *calculated risk ratio $1.50(0.66,3.39)$
Saari et al, 2004 (Finland) [39]	$\mathrm{N}=31$. Men and women with SCZ. All age 31 (1966 birth cohort followed up in 1997).	$N=5498$. Men and women from same birth cohort without history of psychiatric treatment	Mean total cholesterol ($\mathrm{mg} / \mathrm{dL}$)	SMI: Mean $=214.1 \mathrm{mg} / \mathrm{dL}($ SD 33.6$)$ Control: Mean $=196.4 \mathrm{mg} / \mathrm{dL}($ SD 39.0 $)$	ANOVA: : SMI > Controls ($p=.039$) *Standardised mean difference $=0.46$ (0.10 to 0.81)
			Mean HDL cholesterol (mg/dL)	SMI: Mean HDL = $55.9 \mathrm{mg} / \mathrm{dL}$ (no SD) Control: Mean HDL $=60.5 \mathrm{mg} / \mathrm{dL}$ (no SD)	ANOVAe: SMI = Controls ($\mathrm{n} / \mathrm{sig}$)
			Mean LDL cholesterol (mg/dL)	SMI: Mean = $131.5 \mathrm{mg} / \mathrm{dL}($ SD 30.5 $)$ Control: $\mathrm{Mean}=116.3 \mathrm{mg} / \mathrm{dL}$ (no SD)	ANOVAe: SMI = Controls ($\mathrm{n} / \mathrm{sig}$)
			Mean fasting triglycerides (mg/dL)	$\begin{aligned} & \text { SMI: } \text { Mean = } 134.9 \text { (no SD) } \\ & \text { Control: } \text { Mean = } 104.3 \text { (no SD) } \end{aligned}$	ANOVA: SMI > Controls ($\mathrm{p}=.028$)
Ryan et al, 2003 (UK/Ere) [19]	$\mathrm{N}=26$. Men and women with SCZ. All first-episode and drug-naïve. Mean age 33.6 years	$\mathrm{N}=26$. Men and women. Mean age 34.4 years. Matched for age, exercise, diet, smoking, alcohol intake and anthropometric measures.	Mean fasting total cholesterol ($\mathrm{mmol} / \mathrm{L}$)	SMI: Mean $=4.02 \mathrm{mmol} / \mathrm{L}($ SD 0.78$)$ Control: Mean $=4.57 \mathrm{mmol} / \mathrm{L}($ SD 0.81)	T-test: SM1 < Controls ($\mathrm{p}<.02$) *Standardised mean difference $=-0.69$ (-1.25 to -01.3)
			Mean HDL cholesterol ($\mathrm{mmol} / \mathrm{L}$)	SMI: Mean $=1.20 \mathrm{mmol} / \mathrm{L}(S D 0.44)$ Control: Mean $=1.25 \mathrm{mmol} / \mathrm{L}(S D 0.25)$	T-test: SMI = Controls ($\mathrm{n} / \mathrm{sig}$) *Standardised mean difference $=-0.14$ (-0.68 to 0.40)
			Mean fasting LDL cholesterol ($\mathrm{mmol} / \mathrm{L}$)	SMI: Mean $=2.39 \mathrm{mmol} / \mathrm{L}(S D 0.84)$ Control: Mean $=2.91 \mathrm{mmol} / \mathrm{L}(S D 0.69)$	T-test: SMl < Controls ($\mathrm{p}<.02$) *Standardised mean difference $=-0.68$ (-1.24 to -0.12)
			Mean fasting triglycerides ($\mathrm{nmol} / \mathrm{L}$)	SMI: Mean $=0.99 \mathrm{mmol} / \mathrm{L}($ SD 0.43$)$ Control: Mean $=0.92 \mathrm{mmol} / \mathrm{L}($ SD 0.30$)$	T-test: SMI = Controls ($\mathrm{N} / \mathrm{sig}$)
Scottish Schizophrenia Research Group, 2000 (UK: Scotland) [40]	$\mathrm{N}=30$. Men and women with SCZ or SFD. First episode, drug-naïve. Mean age 28 years (males)/33 years (females)	$\mathrm{N}=30$. Matched for gender and age, smoking and dietary status. Mean age 30 years	Mean serum cholesterol ($\mathrm{mmol} / \mathrm{L}$)	SMI: Mean $=4.63 \mathrm{mmol} / \mathrm{L}($ SD 0.80 $)$ Control: Mean $=4.98 \mathrm{mmol} / \mathrm{L}(S D 0.91)$	SMI = Controls ($\mathrm{n} / \mathrm{sig}$) *Standardised mean difference $=-0.41$ (-0.92 to 0.10) - note: 73\% sample smoked
			Mean serum lipid peroxide levels (umol/L)	SMI: Mean $=0.50$ umol/L (SD 0.16) Control: Mean $=0.54$ umol/L (SD 0.23)	SMI = Controls ($\mathrm{n} / \mathrm{sig}$) (Note: 73\% sample smoked)

(B) STUDIES COMPARING PATENTS WTH SM TO NORMATIVE DATA					
Outpatient and Inpatient Samples					
Source	Patient sample description	Comparison group description	Outcome measure	Prevalence estimates or Mean/SD	Main results
Cohn et al, 2004 (Canada) [37]d	$\mathrm{N}=240$. Men and women with SCZ or S-AFF	General population rates from anadian Heart Health Survey (1986-1990)	Mean total cholesterol ($\mathrm{mmol} / \mathrm{L}$)	Means presented as graphs - exact values not given in table or text	T-tests: SMI = Controls ($\mathrm{n} / \mathrm{sig}$) for males and females
			Mean HDL cholesterol ($\mathrm{mmol} / \mathrm{L}$)	Means presented as graphs - exact values not given in table or text	T-tests: SMI < Controls for males ($\mathrm{p}>.001$) and females ($\mathrm{p}=002$)
			Mean triglycerides ($\mathrm{mmol} / \mathrm{L}$)	Exact means/SDs not specified in text or a table. Means presented as graphs (with error bars)	T-tests: SMI > Controls for males ($\mathrm{p}=.001$) and females ($p=.009$)
Long Stay Samples					
Steinert et al, 1996 (Germany)[36]	$\begin{aligned} & N=90 . \text { Men and women with SCZ or } \\ & \text { S-AFF. Age range }=41-90 \end{aligned}$	General population survey data (DHP Study 1988)	Mean total cholesterol ($\mathrm{mg} / \mathrm{dL}$)	SMI: Males: Mean = 205.1 mg/dL (SD 37.0) Females: Mean $=201.7 \mathrm{mg} / \mathrm{dLL}$ (SD 44.2) General population: Males: Mean $=242.9 \mathrm{mg} / \mathrm{dL}$ (SD 45.0) Females: Mean $=250.7 \mathrm{mg} / \mathrm{dL}$ (SD 45.1)	SMI < Controls for males and females (ps <.001)
(C) STUDIES COMPARING PATIENTS WTH SM TO PATIENTS WUTH OTHER DIAGNOSES					
Inpatient Samples					
Yates \& Wallace, 1987 (USA) [21]	$\mathrm{N}=50$. Men and women with BPAD. Excluded non-white patients	$\mathrm{N}=50$. Men and women with DEP, matched for gender and age	Mean fasting cholesterol ($\mathrm{mg} / \mathrm{dL}$). Normal range cited as 130-315 $\mathrm{mg} / \mathrm{dL}$	SMI: Mean $=184.5 \mathrm{mg} / \mathrm{dL}$ (Cl: 173.0 to 196.0) Males: Mean $=180.4$ (CI 164.2 to 196.6) Females: Mean = 189.0 (Cl 171.6 to 206.4) DEP: Mean $=204.3 \mathrm{mg} / \mathrm{dL}$ (No Cl's reported) Males: Mean = 198.2; Females: Mean $=210.4$	None reported
Long Stay Samples					
Steinert et al, 1996 (Germany)[36]	$\mathrm{N}=90$. Men and women with SCZ or SAFF. Mean age 62.6 years (range 41-90)	$N=90$. Men and women with DEP. Mean age 62.3 years (range 39-88).	Mean total cholesterol ($\mathrm{mg} / \mathrm{dL}$) Mean triglycerides ($\mathrm{mg} / \mathrm{dL}$)	SMI: Males: Mean = 205.1 mg/dL (SD 37.0) Females: Mean $=201.7 \mathrm{mg} / \mathrm{dL}$ (SD 44.2) DEP: Males: Mean $=219.7 \mathrm{mg} / \mathrm{dL}$ (SD 50.6) Females: Mean $=223.5 \mathrm{mg} / \mathrm{dL}$ (SD 42.9) SMI: Males: Mean = $128.9 \mathrm{mg} / \mathrm{dL}$ (SD 72.6) Females: Mean $=137.2 \mathrm{mg} / \mathrm{dLL}$ (SD 70.9) DEP: Males: Mean $=158.0 \mathrm{mg} / \mathrm{dL}$ (SD 77.8) Females: Mean $=136.8 \mathrm{mg} / \mathrm{dL}$ (SD 69.5)	None reported None reported
Source of sample unclear					
Roccatagliata et al, 1980 (Italy)[41]	$\mathrm{N}=60$. Men and women with SCZ.	$\mathrm{N}=60$. Men and women with neurological or other psychiatric disorders. Matched for age and sex.	Mean total cholesterol (mg/dL)	$\begin{aligned} & \text { SMI: } \text { Mean = } 188.2 \mathrm{mg} / \mathrm{dL}(\text { (SD 45.4) } \\ & \text { Other diagnosis: } \text { Mean = } 219.0 \mathrm{mg} / \mathrm{dL}(\text { SD 31.8) } \end{aligned}$	T-test: SCZ < Controls (p = .005)
			Mean total lipid (mg/dL)	$\begin{aligned} & \text { SMI: } \text { Mean }=821.5 \mathrm{mg} / \mathrm{dL}(\text { SD } 539.9) \\ & \text { Other diagnosis: } \text { Mean }=840.1 \mathrm{mg} / \mathrm{dL}(\text { (SD 157.7 }) \end{aligned}$	T-test: SCZ = Controls (n /sig)
			Mean triglycerides (mg/di)	SMI: Mean $=173.3 \mathrm{mg} / \mathrm{dL}$ (SD 306.7) Other diagnosis: Mean $=131.2 \mathrm{mg} / \mathrm{dL}$ (SD 45.4)	T-test: SCZ = Controls (n /sig)

TABLE 4: METABOUC SYNDROME PAPERS

Source	Patient sample description	Comparison group description	Outcome measures	Prevalence estimates	Main results
(A) STUDIES WMTH A CONTROL GROUP					
Inpatient Samples					
Saari et al, 2005 (Finland) [20]	$\mathrm{N}=31$. Men and women with SCZ. All in early 30's (from North Finland 1966 Birth Cohort followed up 1997/98).	$\mathrm{N}=5455$. Men and women from same 1966 birth cohort with no history of psychiatric treatment.	Prevalence of metabolic syndrome defined as the presence of 3 or more of 5 NCEP ATP III criteria ${ }^{\text {a }}$	$\begin{aligned} & \text { SMI: Obs }=6 / 31 \text { cases }(19.4 \%) \\ & \text { Control: Obs }=326 / 5455 \text { cases (} 6 \% \text {) } \end{aligned}$	Adjusted OR=3.7 (Cl: 1.5 to 9.0) ${ }^{\text {b }}$ *Calculated risk ratio $=3.24$ (1.57 to 6.69)
McEvoy et al, 2005 (USA) [47]	$\mathrm{N}=687$. Men and women with chronic SCZ	Compared to population from NHANES III study matched for age/race/gender ($\mathrm{n}=687$)	Prevalence of metabolic syndromedefined as the presence of 3 or more of 5 NCEP ATP III criteria ${ }^{\text {a }}$	Male SMI: 183/508 (36.0\%) Controls: 19.7\% Female SMI: $92 / 178$ (51.6\%) Controls: 25.1%	No OR reported. *calculated risk ratios: Male: 1.83 (1.42-2.36) Female: 2.02 (1.40-2.96)
(B) STUDIES COMPARING PATIENTS WTTH SM TO NORMATIVE DATA					
Outpatient Samples					
Heiskanen et al, 2003 (Finland) [42]	$\mathrm{N}=35$. Men and women with SCZ or S-AFF	Finnish general population data from Vanhala et al (1997) and Laaksonen et al (2002) studies	Prevalence of metabolic syndrome defined as the presence of 3 or more of 5 NCEP ATP III criteria ${ }^{\text {a }}$	SMI: Obs = $13 / 35$ cases (37\%) Males $=9 / 19(47 \%) ;$ Females $=4 / 16(25 \%)$ General population rates: Males $=11-17 \%$; Females $=6-20 \%$	None reported *Calculated risk ratio $=3.38$ (males) *Calculated risk ratio $=2.00$ (females)
Basu et al, 2004 (USA) [43]	N = 33. Men and women with S-AFF	Data from US epidemiological study ($\mathrm{N}=8814$) - Ford et al 2002	Prevalence of metabolic syndrome defined as the presence of 3 or more of 5 NCEP ATP III criteria ${ }^{a}$	SMI: Obs = $14 / 33$ cases (42.4\%) Males $=7 / 14(50.0 \%) ;$ Females $=7 / 19(36.8 \%)$ General population rate $=23.7 \%$	None reported *Calculated risk ratio $=1.79$
Outpatient and Inpatient Samples					
Cohn et al, 2004 (Canada) [37]	$\mathrm{N}=240$. Men and women with SCZ or S-AFF	Data from US epidemiological study ($N=8814$) - Ford et al 2002	Prevalence of metabolic syndromedefined as the presence of 3 or more of 5 NCEP ATP III criteria ${ }^{a}$ and/or current treatment with anti-hypertensive or antidiabetic medication	SMI rates: Males $=42.6 \%$ Females $=48.5 \%$ General population rates: Males $=24 \%$ Females $=23 \%$	None reported *Calculated risk ratio $=1.77$ (males) *Calculated risk ratio $=2.11$ (females)

 in papers, risk ratios have been calculated wherever possible.

Abbreviations: SCZ = Schizophrenia; S-AFF = Schizoaffective Disorder; BPAD = Bipolar Affective Disorder.

TABLE 5: PRAMNGHAMRISK SCORE PAPERS

Source	Patient sample description	Comparison group description	Outcome measure	Prevalence estimates or Mean/SD or Median/IQR	Main results
(A) STUDIES WMTH A CONIROL GROUP					
Community Samples					
Osborn et al, 2006 (UK: England)[13]	$\mathrm{N}=74$. Men and women with SCZ , S-AFF or N-ACP	$\mathrm{N}=148$. Men and women.	Prevalence of raised Framingham Risk Score for CHD (higher than expected for individual's age and gender) Median absolute 10-year Framingham Risk Score (\%) for CHD, with interquartile range Mean Framingham Risk Score excess for CHD	SMI: Obs = 37 cases (51.4\%) Control: Obs = 55 cases (37.4\%) SMI: Median = 5\% ; IQR = 2-12\% Control: Median $=4 \%$ IQR $=2-9 \%$ SMI: Mean = 1.99 (SD 7.0) Control: Mean = 0.69 (SD 4.6)	Unadjusted OR=1.7 (1.0 to 3.1) Adjusted OR=1.7 (0.9 to 3.0) ${ }^{\text {a }}$ Adjusted OR=1.3(0.7 to 2.7$)^{\text {b }}$ Mann-Whitney test: SMI > Controls ($p=.049$) T-test: SMI = Controls ($\mathrm{n} / \mathrm{sig}$) *Standardised mean difference $=0.219$ (-0.0441 to 0.516)
Inpatient Samples					
$\begin{aligned} & \text { Luty et al, } 2002 \\ & \text { (UK: Scotland) [44] } \end{aligned}$	$\mathrm{N}=21$. Men and women with SCZ or SFD. Mean age 31 years. First episode of illness; neuroleptic naïve	$\mathrm{N}=25$. Men and women. Mean age 30 years. Matched for gender, age, smoking and dietary status	Mean (10-year) Framingham Risk Score (\%) for Heart Disease ${ }^{\text {c }}$	SMI (9 matched pairs): Mean score $=6 \%$ (SD 5) Control (9 matched pairs): Mean score $=4 \%($ SD 5$)$ General population data: Mean score $=2 \%(S D 3)$.	T-tests: SMI=Controls ($\mathrm{n} / \mathrm{sig}$); SM1>gen popn ($\mathrm{p}=.008$); Controls>gen popn ($\mathrm{p}=.02$) *Standardised mean differences: SMI vs matched controls $=0.4(-0.186$ to 0.986$)$ SMI vs general population $=0.97$
(B) STUDIES COMPARING PATIENTS WTH SM TO NORMATIVE DATA					
Community Samples					
McCreadie, 2003 (UK: Scotland) [45]	$\mathrm{N}=102$. Men and women with SCZ	Compared with general population norms (Scottish Health Survey, 1998)	Mean (10-year) Framingham Risk Score (\%) for CHD ${ }^{\text {c }}$	```SM: Males: Mean score = 10.5%(SD 8) Females: Mean score = 7%(SD 6) General population norms Males: Mean score = 6.4%(SD 6) Females: Mean score=4.1%(SD 4)```	T-tests: Males: SMI>gen popn ($\mathrm{p}=.001$); Females: $\mathrm{SM}=$ =gen popn ($\mathrm{p}=.06$) *Standardised mean differences: $=0.58$ (males); $=0.568$ (females)
Outpatient and Inpatient Samples					
Cohn et al, 2004 (Canada) [37]	$\mathrm{N}=240$. Men and women with SCZ or S-AFF	$\mathrm{N}=7020$. Men and women, randomly selected from Canadian Heart Health Survey dataset (1986-1990). Matched for age and gender distribution.	Mean (10-year) Framingham Risk Score (\%) for myocardial infarction	```SMI: Males: Mean score = 8.9% (no SD) Females: Mean score = 2.6% (no SD) General population: Males: Mean score = 6.3% (no SD) Females: Mean score = 2.0% (no SD)```	T-tests: Males: SMI > General population (p <.O01); Females: SMI = Controls (n/sig)

Notes: a Adjusted for age and gender. ${ }^{\text {b }}$ Adjusted for age, gender and unemployment. ${ }^{c}$ Also report Framingham Risk Score for Stroke. *Standardised mean differences have been calculated where possible.
Abbreviations: SCZ = Schizophrenia; S-AFF = Schizoaffective Disorder; N-ACP = Non-Affective Chronic Psychotic Illness; SFD = Schizophreniform Disorder

