
Additional File 1
Equations of HAART and vaccination strategy
HAART strategy

Let AT , AV and AB denote the Only-Top, Versatile and Only-Bottom MSM population respectively that

were treated. Then we have the following equations for the HAART strategy:






dST

dt
= rT − ST

(
βIBST IB + βIV ST IV

ŇB + ŇV

)
− dMST

dIT

dt
= ST

(
βIBST IB + βIV ST IV

ŇB + ŇV

)
− dIIT − aIT

dAT

dt
= aIT − dAAT

dSV

dt
= rV − SV

(
βIT SV IT + βIBSV IB + βIV SV IV

ŇT + ŇV + ŇB

)
− dMSV

dIV

dt
= SV

(
βIT SV IT + βIBSV IB + βIV SV IV

ŇT + ŇV + ŇB

)
− dIIV − aIV

dAV

dt
= aIV − dAAV

dSB

dt
= rB − SB

(
βIT SBIT + βIV SBIV

ŇT + ŇV

)
− dMSB

dIB

dt
= SB

(
βIT SBIT + βIV SBIV

ŇT + ŇV

)
− dIIB − aIB

dAB

dt
= aIB − dAAB ,

where Ňi = Si + Ii + Ai, i = T, V, B.
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Vaccination strategy

Let VT , VV and VB denote the Only-Top, Versatile and Only-Bottom MSM population respectively that

were vaccinated. Then we have the following equations for the vaccination strategy:





dST

dt
= rT − ST

(
βIBST IB + βIV ST IV

ÑB + ÑV

)
− dMST − vST

dIT

dt
= ST

(
βIBST IB + βIV ST IV

ÑB + ÑV

)
+ VT

(
βIBST IB + βIV ST IV

ÑB + ÑV

)
(1− ε)− dIIT

dVT

dt
= vST − VT

(
βIBST IB + βIV ST IV

ÑB + ÑV

)
(1− ε)− dMVT

dSV

dt
= rV − SV

(
βIT SV IT + βIBSV IB + βIV SV IV

ÑT + ÑV + ÑB

)
− dMSV − vSV

dIV

dt
= SV

(
βIT SV IT + βIBSV IB + βIV SV IV

ÑT + ÑV + ÑB

)

+VV

(
βIT SV IT + βIBSV IB + βIV SV IV

ÑT + ÑV + ÑB

)
(1− ε)− dIIV

dVV

dt
= vSV − VV

(
βIT SV IT + βIBSV IB + βIV SV IV

ÑT + ÑV + ÑB

)
(1− ε)− dMVV

dSB

dt
= rB − SB

(
βIT SBIT + βIV SBIV

ÑT + ÑV

)
− dMSB − vSB

dIB

dt
= SB

(
βIT SBIT + βIV SBIV

ÑT + ÑV

)
+ VB

(
βIT SBIT + βIV SBIV

ÑT + ÑV

)
(1− ε)− dIIB

dVB

dt
= vSB − VB

(
βIT SBIT + βIV SBIV

ÑT + ÑV

)
(1− ε)− dMVB

where Ñi = Si + Ii + Vi, i = T, V,B and ε is the vaccine efficacy, satisfying 0 ≤ ε ≤ 1.
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The persistence of HIV infection

To study the persistence of infection, we discuss the equivalent system of our model as follows:





dIT

dt
= (NT − IT )

(
βIBST IB + βIV ST IV

NB + NV

)
− dIIT

dNT

dt
= rT − dMNT − (dI − dM )IT

dIV

dt
= (NV − IV )

(
βIT SV IT + βIBSV IB + βIV SV IV

NT + NV + NB

)
− dIIV

dNV

dt
= rV − dMNV − (dI − dM )IV

dIB

dt
= (NB − IB)

(
βIT SBIT + βIV SBIV

NT + NV

)
− dIIB

dNB

dt
= rB − dMNB − (dI − dM )IB .

(1)

The positive invariant domain of system (1) is

D = {(Ii, Ni) : 0 ≤ Ii ≤ Ni, 0 ≤ Ni ≤ Ki} , i = T, V,B

and the disease-free equilibrium is

E0 = (I0
T , N0

T , I0
V , N0

V , I0
B , N0

B) =
(

0,
rT

dM
, 0,

rV

dM
, 0,

rB

dM

)
.

First, we introduce some basic definitions and a lemma that will be useful for our discussion. More

definitions and results about persistence can be found in [1].

Let X be a locally compact metric space, with metric d. Let X be the disjoint union of two sets X1 and X2

such that X2 is compact. Let Φ be a continuous semi-flow on X1. An invariant subset M of X is said to be

isolated if M is the maximal invariant set in some neighborhood of itself. Let A and B be two isolated

invariant sets. A is chained to B (A→ B) if there is a full orbit through x which is not either in A or in B,

such that ω(x) ⊂ B, α(x) ⊂ A. Moreover, a finite sequence {M1, M2, ...,Mk} of invariant sets is also called

a chain if M1 →M2 → ...→Mk. The chain is called cyclic if Mk = M1. Otherwise, it is called acyclic.

Lemma 1 (Proposition 4.3 in [1]). Let X be locally compact, X2 be compact in X and X1 be forward

invariant under the continuous semiflow Φ on X. Let xn be a sequence of elements in X1 satisfying

lim
t→∞

sup d(Φt(xn), X2)→ 0, n→∞.

Let M = ∪m
k=1Mk be an isolated covering of Ω2 such that ω(xn) not belong to Mk for all n, k. Then M is

cyclic.
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Then for the persistence of infection, we have the following Theorem.

Theorem 1. When R0 > 1, system (1) is uniformly persistent of infection, i.e., there exists ε > 0 for

system (1), such that

lim
t→∞

inf min{IT (t), IV (t), IB(t)} > ε,

for any solution x(t) with NT (0) > 0, NV (0) > 0, NB(0) > 0 and any one of the three initial conditions

holds: IT (0) > 0, IV (0) > 0 or IB(0) > 0.

Proof. First we calculate the Jacobian matrix of system (1) at E0. It is more convenient to change the

order of coordinates to IT , IV , IB , NT , NV , NB to study the Jacobian matrix.

The Jacobian matrix can be written as follows

J |E0 =

[
JLT 0

JLB JRB

]
,

where

JLT =





−dI
rT βV T

rB + rV

rT βBT

rB + rV

rV βTV

rT + rV + rB

rV βV V

rT + rV + rB
− dI

rV βBV

rT + rV + rB

rBβTB

rT + rV

rBβV B

rT + rV
−dI





,

JLB =





−(dI − dM ) 0 0

0 −(dI − dM ) 0

0 0 −(dI − dM )





and

JRB =





−dM 0 0

0 −dM 0

0 0 −dM



 .

Define

D2 = {(IT , NT , IV , NV , IB , NB)|IT = 0, or IV = 0, or IB = 0, 0 ≤ Ni ≤ Ki},
D1 = D\D2,

D̃1 = {(IT , NT , IV , NV , IB , NB)|0 < Ii < Ni, 0 < Ni ≤ Ki}

where i = T, V,B respectively, and D1 and D̃1 are forward invariant.

Let x0 = (IT (0), NT (0), IV (0), NV (0), IB(0), NB(0)). From system (1) and the assumptions (Ni(0) > 0 and

at least any one of Ii(0) > 0, i = T, V,B holds), it is easy to get that Φt(x0) ∈ D̃1 for all t > 0. So we can

then assume x0 ∈ D̃1.
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Define Ω2 = ∪x∈D2ω(x). It is easy to see that Ω2 = {E0}. Then we will prove the following:

1. {E0} is a weak repeller for D̃1;

2. D2 is a uniform weak repeller for D̃1;

3. D2 is a uniform strong repeller for D̃1.

First, let’s prove that {E0} is a weak repeller for D̃1. Suppose x(t)(= Φt(x0)) stays in a small

neighborhood of E0. Then we have two cases:

1. if IT (0) = IV (0) = IB(0) = 0, then IT (t) = IV (t) = IB(t) ≡ 0. System (1) shows that

(NT (t), NV (t), NB(t)) goes far away from E0 as t→ −∞.

2. if IT (0) > 0, or IV (0) > 0, or IB(0) > 0 holds, then IT (t) > 0, IV (t) > 0 and IB(t) > 0 for all t > 0.

When x(t) stays very close to E0, by system (1), we know that there exists some δ > 0 which is

related to the size of the neighborhood of E0, such that

dX

dt
> JδX, (2)

where

Jδ =





J11
LT − δ J12

LT − δ J13
LT − δ

J21
LT − δ J22

LT − δ J23
LT − δ

J31
LT − δ J32

LT − δ J33
LT − δ



 .

J ij
LT (i, j = 1, 2, 3) are the entries of the top-left matrix JLT of the matrix J |E0 . Since R0 > 1, then by

choosing δ small enough, Jδ has positive non-diagonal elements and its largest eigenvalue is positive.

Hence, the solutions of the linear quasi-monotonic system

dY

dt
= JδY,

where

Y =
[

y1, y2, y3

]T
,

with y1(0) > 0, y2(0) > 0, y3(0) > 0 are exponentially increasing as t→∞. By the comparison

principle, (IT (t), IV (t), IB(t)) goes far away from (0, 0, 0).

From the above two cases, {E0} is isolated in D and it cannot be chained to itself in D2, i.e., {E0} is an

acyclic covering for Ω2. From the proof of case 2 we know that {E0} is a weak repeller for D̃1.
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Second, let’s prove that D2 is a uniform weak repeller for D̃1. If D2 is not a uniform weak repeller for D̃1,

then we can find a sequence

xn = (ITn, NTn, IV n, NV n, IBn, NBn) ∈ D̃1 ⊂ D1,

satisfying

lim
t→∞

sup d(Φt(xn), D2)→ 0, n→∞.

As {E0} is a weak repeller for D̃1, we have ω(xn) not belong to {E0} for all n. Using Lemma 1, we get

that {E0} should be cyclic, which is contrary to our discussion above. So D2 is a uniform weak repeller for

D̃1; i.e., there exists ε̃ > 0 such that

lim
t→∞

sup min{IT (t), IV (t), IB(t)} > ε̃ (3)

for any solution x(t) with Ii(0) > 0, i = T, V,B.

Finally, let’s prove that D2 is a uniform strong repeller for D̃1. Suppose that D2 is not a uniform strong

repeller for D̃1. Then there exist sequences

x0
j = (Ij

T (0), N j
T (0), Ij

V (0), N j
V (0), Ij

B(0), N j
B(0)) ∈ D̃1

and 0 < εj < ε̃, such that

lim
t→∞

inf min{Ij
T (t), Ij

V (t), Ij
B(t)} < εj for j = 1, 2, ... (4)

Here, limt→∞ εj = 0 and (Ij
T (t), N j

T (t), Ij
V (t), N j

V (t), Ij
B(t), N j

B(t)) are the solutions of system (1) with

initial values x0
j ∈ D̃1.

From (3) and (4) we can find sequences 0 < rj < sj < tj with limj→∞ rj =∞ such that

lim
j→∞

min{Ij
T (sj), Ij

V (sj), Ij
B(sj)} = 0, (5)

min{Ij
T (rj), Ij

V (rj), Ij
B(rj)} = min{Ij

T (tj), Ij
V (tj), Ij

B(tj)} = ε̃ (6)

and

min{Ij
T (rj), Ij

V (rj), Ij
B(rj)} ≤ ε̃ for rj ≤ t ≤ tj . (7)

Now, for sequence (Ij
T (rj), N j

T (rj), Ij
V (rj), N j

V (rj), Ij
B(rj), N j

B(rj)), which is convergent, from (6) we say it

converges to

(I∗T (0), N∗
T (0), I∗V (0), N∗

V (0), I∗B(0), N∗
B(0)) = x∗(0) ∈ D̃1
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when j →∞.

Now we prove that tj − rj is unbounded when j →∞. Suppose it is not true. Then, after taking a

subsequence, sj − rj converge to s∗ when j →∞.

Let x∗(t) denote the solution of system (1) with initial value x∗(0) ∈ D̃1. Then, according to the basic

properties of flow and the fact that D̃1 is invariant, we have

+s∗), lim
j→∞

(Ij
i (rj + s∗), N j

i (rj + s∗)) = x∗(s∗) ∈ D̃1, i = T, V,B. (8)

From (5), we have

lim
j→∞

(Ij
T (sj), N j

T (sj), Ij
V (sj), N j

V (sj), Ij
B(sj), N j

B(sj)) = x∗(s∗) ∈ D2, (9)

which is a contradiction. So we say tj − rj is unbounded when j →∞.

Now let x∗(0) ∈ D̃1. Then, from (3), we have

lim
t→∞

sup min{I∗T (t), I∗V (t), I∗B(t)} > ε̃. (10)

In fact, from the above discussion case 2, we know that the inequality (10) always holds when x∗(0) ∈ D1.

Since tj − rj is unbounded, we also can assume that it is increasing monotonically (we can realize this by

choosing a subsequence) and limj→∞ tj − rj =∞. So when k > j and 0 ≤ r ≤ tj − rj , we have

min{Ik
i (rk + r)} ≤ ε̃, i = T, V,B.

Now fix r and j and let j →∞. We have

min{I∗i (r)} = lim
k→∞

min{Ik
i (rk + r)} ≤ ε̃, i = T, V,B. (11)

In fact, (11) holds for all r ≥ 0 since tj − rj is unbounded when j tends to infinity. This is contrary to (10).

So D2 is a uniform strong repeller for D̃1. This finishes the proof.

Since Ni ≥ Ii, i = T, V,B, then, from the strong uniform persistence of infection, we can get the strong

uniform persistence of populations. Finally, we can obtain the strong uniform persistence of (1) relatively

to all components.

Theorem 2 When R0 > 1, then there exists ε > 0 for system (1) such that, for any solutions x(t) with

initial values NT (0) > 0, NV (0) > 0, NB(0) > 0 and IT (0) > 0, IV (0) > 0, or IB(0) > 0, we have

lim
t→∞

inf min{IT (t), NT (t), IV (t), NV (t), IB(t), NB(t)} > ε.
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According to a general result from persistence theory, we can get the existence of the disease equilibrium

for system (1).

Theorem 3 When R0 > 1, there exists at least one disease equilibrium of system (1).

From the results above, we get that, when R0 > 1, HIV will be spread in the MSM population so long as

one infected individual is introduced in this population, regardless of whether he is an Only-Top, a

Versatile or an Only-Bottom.
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