Additional file 2

Table Disease Model Parameters and Values: non-scenario specific valuesThe AsiaFluCap Simulator

SEIR	Description	Chosen	Justification/notes
parameter		value*	
К	Rate of daily contacts possibly resulting in transmission	7	Assumption for the model.
σ	Rate at which individuals leave exposed group	1	1-2 days [1], 2.62 days [2], and 1-5 days[3] between infection and symptom onset.
δ	Rate at which individuals leave asymptomatic group	1/0.4	1 day [2, 3], and 0-2 days [3] infectious before symptom onset.
τ	Rate cases get detected	1/0.5	Assumption for the model.
γ_{a}	Rate at which asymptomatic cases leave infectious group	2	1.9 days [4], 3.38 days [2], 4-10 days [3] mean duration of infectivity.
$\gamma_{\rm m}$	Rate at which mild cases leave infectious group	1/1.5	See above [2, 3, 5].
γ_{c}	Rate at which severe cases leave infected group	1/3.5	See above [2, 3, 5].
γ _{ma} γ _{ca}	Rate at which mild and critical cases under AV treatment leave infectious groups	1/2.5	Infectious period under AV treatment reduced by 1 day [6].
γ_{h}	Rate at which cases leave hospital group	1/12	Length of ICU stay 13.5 days [5].
$\gamma_{\rm v}$	Rate at which cases leave ventilated group	1/13	12 days [7], 15 days [8].
q	Proportion of contacts resulting in transmission	$q=R_0\gamma/\kappa$	Value estimated based on chosen R0 (which can be varied in interface between 1.2-2.5 [9]), taking into account contacts per day (κ) and different infectious periods of case groups (γ's) which are weighted according to the case proportions.
рк	Proportion of contacts reduced during contact reduction period (when prevalence of symptomatic cases >0.5%).	0.10	Value set to 0.10 for all baseline scenarios, which gives more realistic attack rates for given R0 values (since we have homogenous mixing). Users can change proportion in interface between 0 and 0.10.
p_{qh}	Proportion of hospital	0	Value set to 0 for baseline scenario. Users

	transmissions reduced (e.g. due to		can change proportion in interface
	case isolation or use of PPE by		between 0 and 1.
	hospital staff)		
p _{ma}	Proportion of mild cases treated with antivirals		Value set to 0 for baseline scenario. Users
		0	can change proportion in interface
			between 0 and 1.
	Proportion of critical outpatients treated with antivirals		For the baseline scenario it is assumed that
p _{ca}			only critical cases are treated with
		1	antivirals. Users can change proportion of
			critical outpatient receiving antivirals in
			interface between 0 and 1.
	Rate at which susceptible		Vaccination was not included in baseline
	individuals leave susceptible	0	scenario. Number of individuals that can
	compartment through vaccination		be vaccinated per day can be changed by
ρ	(number of individuals that are		users in the interface.
	vaccinated per day).		

*All parameter values can be changed, either in interface or in the SEIR Model sheet of the AsiaFluCap Simulator.

References

- Longini IM, Jr., Nizam A, Xu S, Ungchusak K, Hanshaoworakul W, Cummings DA, Halloran ME: Containing pandemic influenza at the source. *Science* 2005, 309(5737):1083-1087.
- Tuite AR, Greer AL, Whelan M, Winter AL, Lee B, Yan P, Wu J, Moghadas S, Buckeridge D, Pourbohloul B *et al*: Estimated epidemiologic parameters and morbidity associated with pandemic H1N1 influenza. *Cmaj* 2009, 182(2):131-136.
- Pourbohloul B, Ahued A, Davoudi B, Meza R, Meyers LA, Skowronski DM, Villasenor I, Galvan F, Cravioto P, Earn DJ *et al*: Initial human transmission dynamics of the pandemic (H1N1) 2009 virus in North America. *Influenza Other Respi Viruses* 2009, 3(5):215-222.
- Flahault A, Vergu E, Boelle PY: Potential for a global dynamic of Influenza A (H1N1).
 BMC Infect Dis 2009, 9:129.
- Dominguez-Cherit G, Lapinsky SE, Macias AE, Pinto R, Espinosa-Perez L, de la Torre A, Poblano-Morales M, Baltazar-Torres JA, Bautista E, Martinez A *et al*: Critically III patients with 2009 influenza A(H1N1) in Mexico. *Jama* 2009, 302(17):1880-1887.
- Fraser C, Riley S, Anderson RM, Ferguson NM: Factors that make an infectious disease outbreak controllable. *Proc Natl Acad Sci U S A* 2004, 101(16):6146-6151.
- Kumar A, Zarychanski R, Pinto R, Cook DJ, Marshall J, Lacroix J, Stelfox T, Bagshaw S,
 Choong K, Lamontagne F *et al*: Critically ill patients with 2009 influenza A(H1N1)
 infection in Canada. *JAMA* 2009, 302(17):1872-1879.

- 8. Jain S, Kamimoto L, Bramley AM, Schmitz AM, Benoit SR, Louie J, Sugerman DE,
 Druckenmiller JK, Ritger KA, Chugh R *et al*: Hospitalized patients with 2009 H1N1
 influenza in the United States, April-June 2009. N Engl J Med 2009, 361(20):1935-1944.
- 9. van der Weijden CP, Stein ML, Jacobi AJ, Kretzschmar MEE, Reintjes R, van Steenbergen JE, Timen A: Choosing pandemic parameters for pandemic preparedness planning: A comparison of pandemic scenarios prior to and following the influenza A(H1N1) 2009 pandemic. In: *Health Policy*. 2012.