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The model 

Model equations for transmission dynamics of the disease in the population with vaccination.  
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Sensitivity and uncertainty analyses  

To account for the uncertainty in the parameter space, we carried out a sensitivity analysis 

using the Latin Hypercube Sampling (LHS) technique [1] and calculated Partial Rank 

Correlation Coefficients (PRCC) to investigate the effect of parameter changes on the model 

outcomes, specifically on the number of Hib carriage. For this analysis, we considered nine 

parameters and their associated ranges, including 𝜂, 𝜋, 𝑞, 𝛾!, 𝜉, 𝜏, 𝜔, 𝜀, 𝛿, 𝜅. To allow for the 

simultaneous variations of these parameters, samples of size 500 were generated in which 

each parameter was treated as a random variable and assigned a probability function. These 

parameters were uniformly distributed and sampled within their respective ranges. To 

calculate the PRCC, we considered the equilibrium state of the deterministic model structure 

for carriage infection as the response (model output), assuming that there is no correlation 

between the input parameters [2]. The parameters with large PRCC values (close to 1 or -1) 

and their corresponding p-values smaller than the significance level (0.05) have the largest 

influence on the model outcomes [3]. In this analysis, the transmission rate was calculated 

based on the sampled parameter values with fixed 𝑅! = 1.4. We examined scatter plots to 

verify the existence of monotonic relationships between the parameters used in the LHS and 

the response. The PRCC values are presented in Table 2. In the absence of booster, our 

analysis reveals that the rate of loss of immunity (𝜔) has the largest impact on the response. 

When booster vaccination was implemented, the rate of loss of full protection (𝜉) was the 

most important parameter. The second most important parameters that affect the response are 

the rate of recovery from carriage (𝛾!) and the reduction of susceptibility (𝜋) during partial 

protection after vaccination or recovery from infection. Other parameters with p-value<0.001 

had lower impact on the response. Considering PRCC values in Table 2, the results of our 

simulations remained unchanged in their qualitative behaviour for different reproduction 

numbers. 
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Table 2.  Partial rank correlation coefficients (PRCC), and p-values of simulated parameters 

using the Latin Hypercube Sampling (LHS) technique. 

Scenarios 
Parameters and Partial Rank Correlation Coefficients (PRCC) 

𝜂 𝜋 𝑞 𝛾! 𝜉 𝜏 𝜔 𝜀 𝛿 𝜅 

𝛼 = 0,	

𝑟 = 0 
0.273 0.485 0.118 0.628  –  -0.034 0.814 0.063 0.316 0.686 

p-value <0.001 <0.001 0.008 <0.001 – 0.45 <0.001 0.16 <0.001 <0.001 

𝛼 = 1,	

𝑟 = 0 
0.330 0.442 0.084 0.536 -0.980 0.471 0.843 0.035 0.275 0.631 

p-value <0.001 <0.001 0.06 <0.001 <0.001 <0.001 <0.001 0.43 <0.001 <0.001 

𝛼 = 0,	

𝑟 = 1 
0.321 0.556 0.119 0.461 -0.980 0.442 0.840 0.064 0.237 0.657 

p-value <0.001 0.008 <0.001 <0.001 <0.001 <0.001 <0.001 0.16 <0.001 <0.001 
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