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Overview of the compartmental models6

A compartmental model is formed by a series of di�erential equations that estimate the number7

of infectious people per unit time (e.g. days) based on a range of parameters such as the8

transmission rate, the incubation and infectious periods of a disease [1]. In such kind of models,9

the individuals in a population are subdivided into categories or “compartments" for which the10

model tracks the course of the infection process collectively [1]. Compartmental models use11

di�erential equations to describe changes in the course of infection in continuous rather than12

discrete time intervals. Figure 1 depicts the structure of the two compartmental models used in13

the study. The direction of the solid arrows indicates the flow of individuals from a compartment14

to another. The dashed arrows depict the contact between an infectious source (e.g. water or15

an infectious individual) and susceptible individuals. Red colours indicate the presence of an16

exogenous source of infection.17

Influenza model:18

Here, we used a compartmental model to simulate the behaviour of a new strain assumed to19

behave similarly to the 2009/2010 A(H1N1)pdm09 ‘swine flu’. The model assumes that Poisson20

distributed infectious individuals (Imp) randomly arrive into England with a mean λ of five cases21

per day over a 90-day period. Autochthonous transmission begins after the arrival of the first22

imported cases. Susceptible individuals (S) are then infected at a rate β (the per capita rate23

at which two individuals come into e�ective contact [1]) after contact with an infectious person24

1



Figure S1: Schematic representation of the compartmental models used in the study. The model in the
top (A) was used to simulate outbreaks of pandemic influenza. The model in the bottom (B) was used to
simulate outbreaks of cryptosporidiosis.

irrespectively of whether that infectious person is symptomatic (I ) or asymptomatic (A). Once25

infected, individuals become latent (L) carriers of the disease. In latent carriers (L), the disease26

incubates for a period of σ days. A proportion (p) of latent individuals becomes infectious and27

symptomatic (I ) at a rate of 1/σ per day (1/length of the incubation period). The remainder28

(1-p) become infectious but asymptomatic (A) also at a rate of 1/σ per day. Asymptomatic29

individuals have their infectivity reduced by a factor (k). Infectious individuals both symptomatic30

and asymptomatic, recover (R) at an average rate of 1/γ per day, where γ represents the length31

of the infectious period (in days). The equations used for pandemic influenza model were as32

follows [2]:33

dS

dt
= −βS(I + kA)

34

dL

dt
= βS(I + kA)− σL

35

dI

dt
= pσL− γI
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dA

dt
= (1− p)σL− γA

36

dR

dt
= γ(I + A)

where:37

β =
R0

N0

[
p+ k(1− p)

γ

]

R0 = βN0

[
p+ k(1− p)

γ

]

N0 = Total population

Cryptosporidiosis model:38

For cryptosporidiosis, we assumed that a Poisson distributed random number of people with39

mean λ of the population gets infected every day for a 3-day period after drinking k litres of40

unboiled water from a contaminated source (W ). The probability of infection (i.e. the probability41

that the oocysts can cause infection after being ingested) is represented by d. Once infected,42

individuals become latent carriers of the disease (L). In latent carriers (L), the disease incubates43

for a period of σ days. A proportion (p) of latent individuals becomes infectious and symptomatic44

(I ) at a rate of 1/σ per day whilst the remainder (1-p) become infectious but asymptomatic (A) also45

at a rate of 1/σ per day. Infectious individuals both symptomatic and asymptomatic, recover (R)46

at an average rate of 1/γ per day, where γ is the length of the infectious period. The di�erential47

equations used in this model are given by:48

dL

dt
= −σL

49

dI

dt
= pσL− γI
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50

dA

dt
= (1− p)σL− γA

51

dR

dt
= γ(I + A)

Modelling assumptions52

The proposed models have the following shared assumptions:53

1. There are no changes in the population size. We make this assumption because it is54

unlikely to experience significant changes in population size over the short period of the55

simulations.56

2. Individuals are infected at random, and so all susceptible individuals have the same prob-57

ability of infection when in contact with an infectious source.58

3. Once infected, individuals become infectious and recover at a constant rate. This assump-59

tion is convenient because when something typically occurs at a constant rate, such rate60

could be calculated as 1/average time of the event. Thus, for example, if the average incu-61

bation period of the parasite is four days (σ = 4 days), the rate at which individuals become62

infectious equals 1/σ = 1/4 = 0.25 per day (see Figure S1).63

4. Recovered individuals remain immune for the whole simulation period. This situation64

is likely because immunity loss would typically take a period greater than that of our65

simulations (maximum 365 days).66

Cryptosporidiosis-specific assumptions:67

Besides the shared assumptions, the model developed to simulate outbreaks of cryptosporidiosis68

had the following specific assumptions:69
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1. Infection occurs over a 3-day period after which the water supply is fully decontaminated70

or temporarily closed.71

2. The concentration of oocysts in water remains constant over a 3-day period after which72

the water supply is fully decontaminated or temporarily closed.73

3. The probability of infection due to contact with the contaminated water source depends74

on both the dose (number of oocysts per daily water intake) and the probability that a75

single oocyst in the inoculum successfully passes all the host’s barriers to infection. The76

probability of infection is calculated using a hypergeometric (Beta Poisson) dose-response77

relation [3, 4].78

4. There is no shedding of oocysts from the infectious people into the drinking water system.79

5. There are no secondary infections due to person-person contact.80

6. All oocysts in the water source are viable and infective.81

Outbreak size82

As specified in the main text, three outbreak sizes were defined for each disease. For pandemic83

influenza, we defined outbreak size as a function of the basic reproduction number (R0) which84

indicates the number of secondary infections expected for each primary case. The levels corre-85

sponding to the 10th, 50th and 90th percentiles of the range of R0 values (1.4–3.1) are presented on86

table 1 and are based on the established literature for pandemic influenza A(H1N1)pdm09 [5, 6, 7, 8].87

Table 1: Interpretation of the three outbreak sizes defined for each of the two dis-
eases considered in the study.

Outbreak size Interpretation
Influenza (R0) Cryptosporidiosis (λ)

1 1.57 Secondary infections per primary case 854 people exposed each day for 3 days
2 2.25 Secondary infections per primary case 1281 people exposed each day for 3 days
3 2.93 Secondary infections per primary case 8539 people exposed each day for 3 days
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For cryptosporidiosis, on the other hand, outbreak size was defined as a function of the number88

of people consuming un-boiled contaminated water over the exposure period based on previous89

studies and expert knowledge [3, 9, 10, 11, 12]. A Poisson-distributed random number of people90

with mean λ was assumed to get exposed each day to the contaminated water source. Table 191

presents the three values of λ used in the study.92

Summary statistics93

The table below presents the summary statistics for each of the syndromic surveillance indicators94

used in the study.95

Table 2: Summary statistics of the modelled syndromic baseline time series (cases day−1) used in the
study stratified by syndromic surveillance system and indicator.

System Indicator Mean Median SD Range
Influenza

EDSSS Influenza-like illness 2.1 1.1 1.8 0.5–10.3
GPIHSS Influenza-like illness 280.9 164.3 304.8 0.4–1157.4
GPOOHSS Influenza-like illness 50.7 31.5 54.3 7.3–350.0
NHS-111 Cold/flu 183.4 144.9 130.6 39.8–995.0

Cryptosporidium (Location A)
EDSSS Diarrhoea 4.1 4.0 0.6 2.9–5.9
GPIHSS Diarrhoea 287.0 377.5 195.4 0.5–599.5
GPOOHSS Diarrhoea 31.8 22.7 16.0 16.8–77.4
NHS-111 Diarrhoea 75.9 62.3 30.9 39.1–190.1

Cryptosporidium (Location B)
EDSSS Diarrhoea 0.8 0.8 0.1 0.4–1.3
GPIHSS Diarrhoea 14.4 18.7 9.7 0.1–29.4
GPOOHSS Diarrhoea 0.4 0.2 0.4 0.1–1.5
NHS-111 Diarrhoea 9.0 5.4 6.1 3.3–24.6

Cryptosporidium (Location C)
EDSSS Diarrhoea <0.1 <0.1 <0.1 0.0–<0.1
GPIHSS Diarrhoea 21.2 27.3 14.8 0.1–47.3
GPOOHSS Diarrhoea 3.5 1.9 4.4 0.1–15.1
NHS-111 Diarrhoea 10.6 7.0 6.2 4.7–26.9
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Comparing observed vs. simulated outbreaks96

Figure S1 shows the behaviour of the 243 outbreaks of cryptosporidiosis and pandemic influenza97

used in this study. Simulated outbreak data are represented by the gray lines, and are presented98

here scaled by the proportion of people estimated to consult the GPIHSS syndromic surveillance99

system, the proportional coverage of such syndromic surveillance system for location A (cryp-100

tosporidiosis) and the whole of England (influenza), and the percentage of people coded with101

either the diarrhoea or influenza-like illness indicators. For comparative purposes, we included102

historic data (in red) about outbreaks of both diseases that occurred in the United Kingdom in103

recent times [13, 14]. As can be observed, the range of simulated data covers the time span and104

magnitude of the historic outbreak data.105

Figure S2: Simulated number of consultations for diarrhoea and influenza-like-illness (gray lines) for
the GPIHSS system. Historic observed outbreaks (red lines) are presented as a reference.

Several of the simulated Cryptosporidium spp. outbreaks shown on Figure S2 were considerably106

larger than the historical outbreak whilst most of the simulated pandemic influenza outbreaks107

were smaller than their corresponding historical data. Figure S2 however, demonstrates that once108

simulated outbreaks of size 3 are converted to syndromic data, the increase in the expected109

number of people infected with cryptosporidiosis is rather small and so, some outbreaks may go110

unnoticed by the detection algorithm. Conversely, for pandemic influenza the expected number111

of extra cases due to the simulated outbreaks is considerably larger than the baseline and112
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outbreaks are likely to be easily detected.113

Figure S3: Graphical representation of the evaluation algorithm for outbreaks of size 3 occurring in a
metropolitan area (cryptosporidiosis) or across the whole of England (influenza) with onset on 1 January
2015, stratified by disease and syndromic indicator. The light gray lines indicate the baseline syndromic
surveillance data; the dark gray lines depict an average evaluation time series (i.e. imposed outbreak
data); the red lines represent the statistical alarm threshold estimated with the RAMMIE model; and the
vertical thick orange lines indicate the median time to detection.

Alarm Thresholds114

The detection algorithm used as an exemplar in this paper is RAMMIE, and full details of this115

model are provided elsewhere [15]. Every day RAMMIE analyses more than 12,000 separate time116

series. The key output from RAMMIE are predictions of the mean number of system-specific and117
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indicator-specific syndromic counts (henceforth baseline data), and their corresponding alarm118

thresholds (around 99% prediction intervals). These thresholds are used in the operational public119

health system as a very conservative estimate of potentially unusual activity. In considering the120

alarm thresholds generated by RAMMIE potential autocorrelation in the residuals were explored.121

Figure S1 presents autocorrelation plots for the 14 raw data streams input into RAMMIE which122

were used to generate the baselines and alarm thresholds for this paper.123

Figure S4: Partial autocorrelation plots for 14 RAMMIE-derived residuals from the datasets used to gen-
erate the baseline data and their corresponding alarm thresholds.
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Overall, the mean temporal autocorrelation at 1 day lag from these 14 data streams is moderate at124

around 0.3. However, there is variation between data stream, and lower autocorrelations at day125

1 are apparent in the data streams for Cryptosporidium as opposed to influenza-like illness.126

There is also evidence that for NHS111 the autocorrelations are more short-lived (I.e. mostly on127

day 1). For EDSS influenza-like illness the autocorrelations spread a longer time span.128

Automated detection systems such as RAMMIE need to be necessarily conservative (avoiding false129

negatives). The figures above indicate some temporal autocorrelation in the RAMMIE-derived130

residuals, and hence the number of statistical alarms will be greater than if this autocorrelation131

did not exist. This conservative approach is logical within an operational syndromic surveillance132

system. This contrasts to a more traditional epidemiological study where a significant result holds133

much greater prominence and most e�ort goes into reducing false positives. In an operational134

system “alarms” are only the first step in a long risk assessment process [16] through which only135

around 1 in a 1000 will result in public health action. This is the point at which reducing false136

positives is emphasized. There are other practical reasons why autocorrelation is di�cult to take137

into account. An operational syndromic surveillance system needs to predict future activity and138

prediction intervals weeks ahead. Incorporating an autocorrelation term into models is hence139

challenging as the future activity is unknown.140
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