1 Additional File 1. Simulation study parameter combinations. Simulation study parameter

Parameter	Type Sampling	Low	Medium	High	Justification	
Number of		2		5	Arbitrary	
repeat tests						
Proportion of	Sampling	0.10	0.50	1.0	Arbitrary	
sampled						
individuals						
with repeat						
tests						
Proportion of	Sampling	0.001	0.01	0.05	U.S. average daily testing rate ~0.1%	
sampled					of population/day in May 2020 (1,2)	
individuals					Harvard "Massive Scale Testing"	
					plan calls for testing 2 - 6% of	
					population per day (3)	
Test	Sampling	0.30		0.78	Reports in the literature are highly	
sensitivity					variable (4-16). A literature review	
(detection					by (16) found that sensitivity for	
probability)					nasal swabs averaged 73.3% (95% C	
					68.1–78.0%) when using RT-	
					qPCR. There are, however, reasons t	
					believe that these values may be	
					biased high when compared to	

2 combinations for evaluating the effectiveness of different sampling and biological parameters.

samples taken from random and therefore primarily non-symptomatic patients. Some proportion of the sample will have just contracted the disease and will likely have low viral loads in their nasal passages. Similarly, some proportion of the population will be asymptomatic: we know little about this group but can assume that viral loads in their nasal passages will likely be lower than those that are either presymptomatic or symptomatic. If this is the case, tests on asymptomatic patients would be expected to have lower sensitivity than indicated by published results. We assume that there would be a group of recently infected people in our sample, entirely asymptomatic, who would be sick, but would seldom test positive (17).

Probability of	Biological	0.001	0.01	0.10	Total confirmed positive overall in
being infected					the US is ~2.3% (7,894,768 U.S.
$(\psi_{\rm I})$					cases confirmed positive (18),
					330,455,538 U.S. population (19)).
					Range of values were selected to be
					relevant for surveillance.

References

6	1.	Coronavirus (COVID-19) Testing [Internet]. [cited 2020 May 15]. Available from:
7		https://ourworldindata.org/coronavirus-testing#the-scale-of-testing-compared-to-the-scale-
8		of-the-outbreak
9	2.	The COVID Tracking Project [Internet]. [cited 2020 May 15]. Available from:
10		https://covidtracking.com/data
11	3.	Bryant, JamesAllen D, Block S, Cohen J, Eckersley P, Eifler M, Gostin L, et al. Roadmap
12		to pandemic resilience [Internet]. Edmond J. Safra Center for Ethics, Harvard University;
13		2020. p. 56. Available from: https://ethics.harvard.edu/covid-roadmap
14	4.	Scohy A, Anantharajah A, Bodéus M, Kabamba-Mukadi B, Verroken A, Rodriguez-
15		Villalobos H. Low performance of rapid antigen detection test as frontline testing for
16		COVID-19 diagnosis. J Clin Virol [Internet]. 2020;129(May):104455. Available from:
17		https://doi.org/10.1016/j.jcv.2020.104455
18	5.	Mak GC, Cheng PK, Lau SS, Wong KK, Lau CS, Lam ET, et al. Evaluation of rapid
19		antigen test for detection of SARS-CoV-2 virus. J Clin Virol [Internet].
20		2020;129(June):104500. Available from: https://doi.org/10.1016/j.jcv.2020.104500
21	6.	Linares M, Pérez-Tanoira R, Carrero A, Romanyk J, Pérez-García F, Gómez-Herruz P, et
22		al. Panbio antigen rapid test is reliable to diagnose SARS-CoV-2 infection in the first 7
23		days after the onset of symptoms. J Clin Virol. 2020;133(September):3-6.
24	7.	Xie X, Zhong Z, Zhao W, Zheng C, Wang F, Liu J. Chest CT for typical coronavirus
25		disease 2019 (COVID-19) pneumonia: relationship to negative RT-PCR testing.

26

Radiology. 2020;296(2):E41-5.

27	8.	Arevalo-Rodriguez I, Buitrago-Garcia D, Simancas-Racines D, Zambrano-Achig P, del
28		Campo R, Ciapponi A, et al. False-Negative Results of Initial Rt-Pcr Assays for Covid-19:
29		a Systematic Review. 2020;1–33.
30	9.	Williams TC, Wastnedge E, McAllister G, Bhatia R, Cuschieri K, Kefala K, et al.
31		Sensitivity of RT-PCR testing of upper respiratory tract samples for SARS-CoV-2 in
32		hospitalised patients: a retrospective cohort study. medRxiv.
33	10.	Luo L, Liu D, Wang Z, Chen P, Mao C. Modes of contact and risk of transmission in
34		COVID-19: a prospective cohort study 4 950 close contact persons in Guangzhou of
35		China. Lancet.
36	11.	Fang Y, Nie Y, Penny M. Transmission dynamics of the COVID-19 outbreak and
37		effectiveness of government interventions: A data-driven analysis. J Med Virol.
38		2020;92(6):645–59.
39	12.	Meyerson NR, Yang Q, Clark SK, Paige CL, Fattor WT, Gilchrist AR, et al. A
40		community-deployable SARS-CoV-2 screening test using raw saliva with 45 minutes
41		sample-to-results turnaround. medRxiv [Internet]. 2020;2020.07.16.20150250. Available
42		from: https://doi.org/10.1101/2020.07.16.20150250
43	13.	Chan JF-W, Yip CC-Y, To KK-W, Tang TH-C, Wong SC, Leung K-H, et al. Improved
44		molecular diagnosis of COVID-19 by the novel, highly sensitive and specifice COVID-
45		19-RdRp/Hel real-time reverse transcription-PCR assay validated in vitro and with clinical
46		specimens. J Clin Microbiol. 2020;(April):1-10.

47	14.	Long C, Xu H, Shen Q, Zhang X, Fan B, Wang C, et al. Diagnosis of the Coronavirus
48		disease (COVID-19): rRT-PCR or CT? Eur J Radiol [Internet]. 2020;126(March):108961.
49		Available from: https://doi.org/10.1016/j.ejrad.2020.108961
50	15.	Woloshin S, Patel N, Kesselheim AS. False negative tests for SARS-CoV-2 infection -
51		challenges and implications. N Engl J Med [Internet]. 2020;38(1):1-2. Available from:
52		nejm.org
53	16.	Böger B, Fachi MM, Vilhena RO, Cobre AF, Tonin FS, Pontarolo R. Systematic review
54		with meta-analysis of the accuracy of diagnostic tests for COVID-19. Am J Infect Control.
55		2020;000.
56	17.	Larremore DB, Wilder B, Lester E, Shehata S, Burke JM, Hay JA, et al. Test sensitivity is
57		secondary to frequency and turnaround time for COVID-19 surveillance. medRxiv
58		[Internet]. 2020;2020.06.22.20136309. Available from:
59		https://www.medrxiv.org/content/10.1101/2020.06.22.20136309v2%0Ahttps://www.medr
60		xiv.org/content/10.1101/2020.06.22.20136309v2.abstract%0Ahttps://www.medrxiv.org/c
61		ontent/10.1101/2020.06.22.20136309v2%0Ahttps://www.medrxiv.org/content/10.1101/20
62		20.06.22.201
63	18.	CDC COVID Data Tracker [Internet]. [cited 2020 Oct 16]. Available from:
64		https://covid.cdc.gov/covid-data-tracker/#trends_dailytrendscases
65	19.	U.S. and World Population Clock [Internet]. [cited 2020 Oct 16]. Available from:
66		https://www.census.gov/popclock/
67		