3	In occupancy modeling, wildlife and fisheries literature recommends sampling more sites		
4	(individuals) fewer times (repeat tests) as preferable when species are particularly rare $(1-3)$.		
5	General sampling recommendations also include increasing the number of sites instead of		
6	sampling occasions per site when detection probabilities are high and increasing sampling		
7	occasions per site as detection probabilities decrease (4). These sampling recommendations are		
8	recommended for prevalence inference but can also assist with individual-level inference due to		
9	better estimates of test sensitivity using repeated samples necessary for occupancy modeling.		
10	Individual-level inference requires accurate estimates of test sensitivity and may have		
11	different optimal sampling strategies if the objective is at the individual-level due to false		
12	negatives with testing (Supplementary Figure 1). We illustrate this concept with the number of		
13	repeat tests needed for determining the probability of detecting the disease at the individual level		
14	using our true test sensitivity values of 0.3 and 0.78. The probability of a false negative is		
15	calculated as: $(1 - test sensitivity)^k$ where k is the number of tests. From the occupancy		
16	literature(5) a range of 0.05 to 0.15 is recommended for best inference for the probability of a		
17	false negative. The probability of detecting the disease at least once during k tests with an		
18	individual that has the disease (p^* in the occupancy literature) is calculated as: 1 - (1 - <i>test</i>		
19	sensitivity) ^{k} . Using our true values for test sensitivity, we illustrate how calculating the		
20	probability of detecting the disease at least once during k tests with an individual that has the		
21	disease shows that repeat sampling is more important with lower test sensitivities		
22	(Supplementary Figure 2).		

References

24	1.	Sanderlin JS, Block WM, Ganey JL. Optimizing study design for multi-species avian
25		monitoring programmes. J Appl Ecol. 2014;51(4):860–70.
26	2.	Mackenzie DI, Royle JA. Designing Occupancy Studies : General Advice and Allocating
27		Survey Effort. J Appl Ecol. 2005;42(6):1105–14.
28	3.	Field S, Tyre A, Possingham H. Optimizing Allocation of Monitoring Effort Under
29		Economic and Observational Constraints. J Wildl Manage. 2005;69(3):473-82.
30	4.	Tyre AJ, Tenhumberg B, Field SA, Niejalke D, Parris K, Possingham HP. Improving
31		precision and reducing bias in biological surveys: Estimating false-negative error rates.
32		Ecol Appl. 2003;13(6):1790–801.
33	5.	Mackenzie DI, Nichols JD, Royle JA, Pollock KH, Bailey LL, Hines JE. Occupancy
34		estimation and modeling. New York, New York: Academic Press; 2006.
35		
36		

- 37
- Supplementary Figure 1. Probability of a false negative and test sensitivity. SARS-CoV-2 image
- 39 credit: Centers for Disease Control and Prevention, Alissa Eckert (MSMI) and Dan Higgins
- 40 (MAMS).

41

42

Supplementary Figure 2. Probability of detecting the disease at least once with an individual that
has the disease as a function of total tests. Occupancy literature recommends a false negative

45 error rate range between 0.05-0.15 (or a 95% probability of detecting the disease at least once).