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Statistical Analyses 
The simple and multiple negative binomial (NB) regression model was used, with the number of 
sepsis cases per district as the outcome variable (denoted by the variable Y). The NB model was 
preferred to the standard Poisson Model due to the problem of overdispersion in our data. The 
logarithm of the number of inhabitants per district was included as an offset variable in the model to 
adjust for varying population sizes across districts. The NB model with k ≥ 1 predictor variables Xj 
(with j = 1, …, k) can be written as 
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The conditional variance function is 
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This parameterization of the model is also referred to as the NB1 model in the literature1. θ is the 
dispersion parameter, which is defined as the precision (e.g. the inverse variance) of the exponential 
function of the random effects term ε. Hence θ - 1 = Var[exp(ε)]. Note that Var[exp(ε)]  approach zero 
if θ approaches infinity. In this case the Poisson regression model results with the equality E(Y | X) = 
Var(Y | X). We tested for overdispersion by a statistical comparison of the NB model and the more 
restricted Poisson model using the likelihood ratio test, with the Null hypothesis  H0: Var[exp(ε)] = 0 
(e.g. no overdispersion). We used the R-function glm.nb from the MASS package2 for fitting the NB 
model, and the glm of the base distribution of R3 function for estimating the Poisson regression model. 

Pseudo-R2 for the Negative Binomial Regression Models 
We provide Nagelkerkes pseudo-R2 as a standardized measure of the strength of the stochastic 
relationship between the outcome variable Y (i.e., the incidence) and one or more predictor variables. 
In our case the computation of the pseudo-R2 was computed based on two likelihood functions. First, 
likelihood of the NB model with the predictor variables X1, …, Xk and the offset variable log(N), and 
second, the NB model that only includes the intercept and the offset variable log(N). 

Estimated Expected Change 
The regression coefficients βj in the NB regression model are differences in the logarithm of the 
expected numbers of events if the predictor Xj increases by one unit. As differences at the logarithmic 
scale are hard to interpret, we converted the regression coefficients to an expected change in the 
number of cases if the predictor Xj increases by one unit (ECj). Positive numbers of ECj represent an 
increase in sepsis cases while negative values means that the incidence decreases if Xj increases. The 
ECj can be derived from Equation 1 with a single predictor variable Xj: 
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In order to get the ECj per 100.000 population units, Equation 3 must be multiplied by 100.000. Note 
that the term exp(βj) – 1 is the expected proportional change (EPCj): 
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Hence, 100 ∙ EPCj is the expected percentage change in the number of cases if Xj increases by one 
unit. While the EPCj is constant for all values xj, ECj is a function with different numbers depending 
on the value xj. In order to provide meaningful estimates, we computed ECj if the mean 𝑥̅௝ of the 

predictor Xj increases by one unit:  
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Note that the Equations 3 to 5 were derived for the case of the NB regression with one predictor 
variable Xj. However, the ECj as well as the EPCj can also be computed based on partial regression 
coefficients of a multiple NB regression with k ≥ 2 predictor variables. In this case the ECj and the 
EPCj are computed under statistical control of the remaining predictor variables Xi, with i ≠ j, in the 
model. Therefore we denote these quantities as the adjusted ECj and the adjusted EPCj. The latter is 
defined as 
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with Z the vector of all covariates Xi, with i ≠ j. The adjusted EPCj is a constant but ECj is a function 
depending not only on Xj but also from the values of the other predictor variables Z. Analogous to the 
ECj we computed the adjusted ECj given that the mean 𝑥̅௝ of the predictor Xj increases by one unit and 

the other predictors are constant at their means Z = 𝒛ത. Hence the adjusted ECj is defined as  
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95% confidence intervals of the estimated EPCj, adjusted EPCj, ECj and the adjusted ECj are obtained 
by inserting the confidence limits of βj into Equations 4 to 7. 
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