Additional file 1

Enrollment history for the German DMPs for type 2 diabetes and CHD.

DMP CHD

Participation in DMPs for CHD and DM2

Table S1

Description of analyzed variables and the source of the data

Variable	Unit	Source	Source	
Mortality	# of deaths	WHO	http://apps.who.int/healthinfo/statistics/m ortality/causeofdeath_query/start.php	
Population size	Total # alive	WHO	http://apps.who.int/healthinfo/statistics/m ortality/causeofdeath_query/start.php	
Age	20-54, 55-64, 65-74, 75+		http://apps.who.int/healthinfo/statistics/m ortality/causeofdeath_query/start.php	
Sex	men, women		http://apps.who.int/healthinfo/statistics/m ortality/causeofdeath_query/start.php	
GDP per capita	GDP/capita	World Bank	https://data.worldbank.org/	
Unemployment	%	World Bank	https://data.worldbank.org/	
Health care expenditure	% of GDP	World Bank	https://data.worldbank.org/	
Smoking prevalance	% smokers	OECD	https://data.oecd.org/	
Alcohol consumption	liter of alcohol/capita and year	OECD	https://data.oecd.org/	
Obesity prevalance	% (age standardized)	NCD Risk Factor collaborat ion	http://ncdrisc.org/data-downloads.html	
Diabetes prevalance	% (age standardized)	NCD Risk Factor collaborat ion	http://ncdrisc.org/data-downloads.html	
Hypertension prevalance	% (age standardized)	NCD Risk Factor collaborat ion	http://ncdrisc.org/data-downloads.html	

Variables and data sources

Trends in circulatory mortality (top panel) and all-cause mortality (bottom panel) in Germany as well as the rest of the European countries from 1998 – 2014

Table S2

The average treatment effects as well as the 95% confidence interval (CI), for each subgroup, each outcome and each intervention time point.

Intervention time		2003		2006		2009	
Age group	Mortality type	Est	95-% Cl	Est	95-% CI	Est	95-% CI
55-64	Circulatory	-0.05	[-0.14; 0.04]	-0.03	[-0.11; 0.04]	-0.02	[-0.11; 0.04]
years	All-cause	-0.03	[-0.41; 0.32]	-0.04	[-0.22; 0.09]	-0.04	[-0.24; 0.1]
65-74	Circulatory	-0.05	[-0.49; 0.59]	0.13	[-0.17; 0.35]	0.02	[-0.2; 0.18]
years	All-cause	-0.27	[-1.01; 0.49]	0.24	[-0.42; 0.54]	0.18	[-0.22; 0.45]
75+ years	Circulatory	-0.3	[-1.09; 0.24]	0.04	[-0.63; 0.54]	-0.13	[-0.65; 0.34]
	All-cause	0	[-0.48; 0.48]	-0.04	[-0.64; 0.63]	-0.24	[-0.83; 0.53]
20-54 years	Circulatory	0	[-0.02; 0.01]	-0.01	[-0.03; 0.01]	0	[-0.02; 0.02]
	All-cause	-0.03	[-0.73; 0.67]	-0.01	[-0.09; 0.06]	0	[-0.09; 0.06]

Table S1: Average treatment effect with 95% CI for all subgroup analysis

Subgroup analysis: disaggregated age (55-64; 65-74; 75+) for circulatory mortality, intervention point 2003

Diseases of the circulatory system - intervention point 2003

Subgroup analysis: disaggregated age (55-64; 65-74; 75+) for circulatory mortality, intervention point 2006

Diseases of the circulatory system - intervention point 2006

Subgroup analysis: disaggregated age (55-64; 65-74; 75+) for circulatory mortality, intervention point 2009

Diseases of the circulatory system - intervention point 2009

Subgroup analysis: disaggregated age (55-64; 65-74; 75+) for all-cause mortality, intervention point 2003

All-cause mortality - intervention point 2003

Subgroup analysis: disaggregated age (55-64; 65-74; 75+) for all-cause mortality, intervention point 2006

All-cause mortality - intervention point 2006

Subgroup analysis: disaggregated age (55-64; 65-74; 75+) for all-cause mortality, intervention point 2009

All-cause mortality - intervention point 2009

Sensitivity analysis: younger age group (20-54), where no or minimal effect is to be expected, for circulatory mortality.

Diseases of the circulatory system

- Synthetic control - Control countries (raw) - Germany (treated)

1998 2000 2002 2004 2006 2008 2010 2012 2014

Sensitivity analysis: younger age group (20-54), where no or minimal effect is to be expected, for allcause mortality.

All-cause mortality

Sensitivity analysis: leave-one-country-out analyses for CHD mortality

Sensitivity analysis: leave-one-country-out analyses for all-cause mortality

