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Appendix 2: Model and estimation procedure

1. The model

To model Dutch-education-specific mortality rates, we use a three-layer Li and Lee (2005)

model. Each layer is modeled as a Lee and Carter (1992) model with identification con-

straints as in Liu et al. (2019). Below we present the model for the three layers.

We denote x for an age group, t for a time period, g ∈ {m, f} for gender, in which m (f)

stands for male (female), and e ∈ {l,m, h} for educational level, in which l (m, and h)

stands for low (medium, and high) education.

Layer 1: Aggregate international mortality

In the first layer, we model international mortality rates for males and females separately.

Specifically, let mg
x,t be the central mortality rate for gender g ∈ {m, f}, age group x, and

year t for a group of countries. Then:

ln mg
x,t = A(1),g

x +B(1),g
x K

(1),g
t + u

(1),g
x,t , (1)

where u
(1),g
x,t is a measurement error with zero mean and finite variance. The identification

constraints are:

∑
x

A(1),g
x = 0 and

∑
x

B(1),g
x = 1, for g ∈ {m, f}. (2)

Layer 2: International education-specific deviation

In the second layer, we model the difference between international education-specific log-

arithm central death rates and international logarithm central death rates from layer 1.
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Specifically, let mg,e
x,t be the central mortality rate for gender g ∈ {m, f}, age group x,

educational level e, and year t for the group of countries from layer 1. Then:

ln mg,e
x,t − ln mg

x,t = A(2),g,e
x +B(2),g,e

x K
(2),g,e
t + u

(2),g,e
x,t , (3)

where u
(2),g,e
x,t is a measurement error with zero mean and finite variance. The identification

constraints are:

∑
x

A(2),g,e
x = 0, and

∑
x

B(2),g,e
x = 1. (4)

Layer 3: Dutch education-specific deviation

In the third layer, we model the difference between the Dutch education-specific log central

death rate and the international education-specific log central death rate from layer 2.

Specifically, let mg,e,NL
x,t be the central mortality rate for the Netherlands for gender g ∈

{m, f}, age group x, educational level e and year t. Then:

ln mg,e,NL
x,t − ln mg,e

x,t = A(3),g,e,NL
x +B(3),g,e,NL

x K
(3),g,e,NL
t + u

(3),g,e,NL
x,t , (5)

where u
(3),g,e,NL
x,t is a measurement error with zero mean and finite variance. The identifi-

cation constraints are:

∑
x

A(3),g,e,NL
x = 0 and

∑
x

B(3),g,e,NL
x = 1. (6)

Dutch education-specific mortality

Dutch education-specific log mortality (ln mg,e,NL
x,t ) is the sum of the three layers. Com-
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bining (1), (3), and (5) yields:

lnmg,e,NL
x,t = ln mg

x,t + (ln mg,e
x,t − ln mg

x,t) + (ln mg,e,NL
x,t − ln mg,e

x,t),

= A(1),g
x +A(2),g,e

x +A(3),g,e,NL
x +B(1),g

x K
(1),g
t +B(2),g,e

x K
(2),g,e
t +B(3),g,e,NL

x K
(3),g,e,NL
t

+u(1),g
x,t + u

(2),g,e
x,t + u

(3),g,e,NL
x,t . (7)

2. The data

We use the following data to estimate the model:

• Layer 1: number of deaths and exposures for Finland, Norway, Denmark, Belgium,

Switzerland, and the Netherlands, by gender, by five year age group for the age range

35-39 up to 80-84, and by single calendar year for the years 1970 till 2016. Data are

obtained from the Human Mortality Database (HMD)[24].

• Layer 2: number of deaths and exposures by gender and educational level for Finland,

Norway, Denmark, Belgium, Switzerland, and the Netherlands, by five year age group

for the age range 35-39 up to 80-84. The data is by seven, five, two or single calendar

years depending on the country. The data was collected and harmonized as part

the LIFEPATH and earlier European projects at Erasmus MC. To use the data in

the estimation procedure, we have allocated each year range to a midpoint year.

To ensure that for each midpoint year we can use data for at least four of the six

countries, we have included in our analysis only the midpoint years 1993, 1998, 2003,

2008, and 2013. In case a calculated midpoint deviated at most one year from one of

these included midpoint years, we allocated the data to the closest included midpoint.

The left panel in Table 1 displays the calculated midpoints; the right panel displays

the allocated midpoints. The table shows that the shifts between a calculated and

an allocated midpoint year were maximum one year.

• Layer 3: number of deaths and exposures in the Netherlands by gender, by educa-
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Country Calculated midpoint Allocated midpoint

Belgium 1994 2004 2009 1993 2003 2008

Denmark 1997 2002 2007 2012 1998 2003 2008 2013

Finland 1993 1998 2003 2008 2013 1993 1998 2003 2008 2013

Netherlands 2008 2013 2008 2013

Norway 1993 1998 2004 2008 1993 1998 2003 2008

Switzerland 1993 1998 2003 2008 2013 1993 1998 2003 2008 2013

Table 1: Left panel: calculated midpoint years. Right panel: allocated midpoint years. A
blue entry in the left panel indicates that the midpoint year was shifted by one year.

tional level, by five year age group for the age range 35-39 up to 80-84, and by single

calendar year for the years 2006, 2007, ...., 2018. Data were obtained through indi-

vidual data linkage of register data of all persons living in the Netherlands, within

the secure environment of Statistical Netherlands.

3. Parameter estimation

In this section we describe the estimation procedure, taking into account the different time

periods for which data is used in the three layers. An overview of the data is provided in

Table 2.

Age range Year range

HMD 35-39,40-44,. . . ,80-84 1970,1971,. . . ,2017,2016

INT EDU 35-39,40-44,. . . ,80-84 1993, 1998, 2003, 2008, 2013

NL EDU 35-39,40-44,. . . ,80-84 2006,2007,...,2017,2018

Table 2: Overview of the data

3.1 The central mortality rates

We denote x for an age group, t for a time period, g ∈ {m, f} for gender, and e ∈ {l,m, h}

for the educational level, and c ∈ C := {FL,NW,DM,BE, SWZ,NL} for the country.

Moreover, we use the following notation:

• Dg,c
x,t : the number of deaths in period t for gender g and age group x in country c ∈ C;

• Eg,cx,t : the exposure to death in period t for gender g, age group x in country c ∈ C;
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• Dg,e,c
x,t : the number of deaths allocated to midpoint year t for gender g, age group x,

and educational level e in country c ∈ C;

• Eg,e,cx,t : the exposure to death allocated to midpoint year t for gender g, age group x,

and educational level e in country c ∈ C.

Then, for genders g ∈ {m, f}, age groups x ∈ {35− 39, 40− 44, . . . , 80− 84}, educational

levels e ∈ {l,m, h}, and years t, the central death rates at the three levels are estimated as

follows:

mg
x,t =

∑
c∈Ct

Dg,c
x,t/

∑
c∈Ct

Eg,cx,t , for t ∈ {1970, 1971, . . . , 2016}; (8)

mg,e
x,t =

∑
c∈Ct

Dg,e,c
x,t /

∑
c∈Ct

Eg,e,cx,t , for t ∈ {1993, 1998, 2003, 2008, 2013}; (9)

mg,e,NL
x,t = Dg,e,NL

x,t /Eg,e,NLx,t , for t ∈ {2006, 2007, . . . , 2018}, (10)

where Ct is the set of countries with data allocated to midpoint year t, as displayed in

Table 1.

3.2 Choice of time series processes in the three layers

We use the modified estimation of Liu et al. (2019). An important difference between this

estimation and the traditional Singular-Value-Decomposition (SVD) estimation (Lee and

Carter 1992) is that estimation of the parameters Ax,t and Bx,t depends on the specification

of the time series process for the time varying component Kt. Hence, the selection of time

series processes for the three layers is the first step in the estimation procedure.

In this section we discuss the selection of a time series process for K
(1),g
t ,K

(2),g,e
t , and

K
(3),g,e,NL
t for g ∈ {m, f} and e ∈ {l,m, h}. In each case, we make a choice between a

Random Walk with Drift (RWD) and AutoRegressive process of order 1 (AR1).
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Let us denote:

Z
(1),g
t =

∑
x

ln(mg
x,t),

Z
(2),g,e
t =

∑
x

(
ln mg,e

x,t − ln mg
x,t

)
,

Z
(3),g,e,NL
t =

∑
x

(
ln mg,e,NL

x,t − ln mg,e
x,t

)
.

(11)

It then follows from the identification constraints that:

K
(1),g
t = Z

(1),g
t − ū(1),g

t ,

K
(2),g,e
t = Z

(2),g,e
t − ū(2),g,e

t ,

K
(3),g,e,NL
t = Z

(3),g,e,NL
t − ū(3),g,e,NL

t ,

(12)

where ū
(1),g
t =

∑
x u

(1),g
x,t , ū

(2),g,e
t =

∑
x u

(2),g,e
x,t , and ū

(3),g,e,NL
t =

∑
x u

(3),g,e,NL
x,t .

Figure 1 displays Z
(1),g
t =

∑
x ln(mg

x,t) (black circles), as well as Z
(1),g
t +Z(2),g,e

t =
∑
x ln(mg,e

x,t)

(red circles) and Z
(1),g
t + Z

(2),g,e
t + Z

(3),g,e
t =

∑
x ln(mg,e,NL

x,t ) (blue dots) for low (left pan-

els) medium (middle panels) and high (right panels) educational level. The top (bottom)

panels correspond to males (females).

• Selecting a process for K
(1),g
t (international mortality): Figure 1 shows that for both

males and females, Z
(1),g
t follows a relatively stable declining trend. Hence, we choose

a RWD process for K
(1),g
t for both genders:

K
(1),g
t = µ(1),g +K

(1),g
t−1 + ε

(1),g
t , (13)

where µ(1),g is the drift term and ε
(1),g
t is an innovation with zero mean and finite

variance.1

• Selecting a process for K
(2),g,e
t (international education-specific deviation): Com-

paring the black circles and red circles suggests that for the low educated, the trend

1We do not specify the distribution of the measurement errors and the innovations because we focus on
point estimates.
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Figure 1: The figure displays
∑
x ln(mg

x,t) (black circles), as well as =
∑
x ln(mg,e

x,t) (red cir-

cles) and
∑
x ln(mg,e,NL

x,t ) (blue dots) for low (left panels) medium (middle panels) and high
(right panels) educational level. The top (bottom) panels correspond to males (females).

diverges from the overall population trend whereas for the middle educated, the trend

seems to be parallel. Hence, we choose a RWD for the low education group and an

AR1 process for the middle education group. For the high educational group, Figure

1 does not yield a clear conclusion. We have therefore estimated the time process

both for the case of an RWD process and an AR1 process. Because the differences

were negligible, we present results for the case where K
(2),g,h
t follows a RWD. hence:

K
(2),g,e
t = µ(2),g,e +K

(2),g,e
t−1 + ε

(2),g,e
t , for e = l, h, (14)

K
(2),g,m
t = φ

(2),g,m
0 + φ

(2),g,m
1 K

(2),g,e
t−1 + ε

(2),g,m
t , (15)

where ε
(2),g,e
t are innovations with mean zero and finite variance.

• Selecting a process for K
(3),g,e,NL
t (Dutch education-specific deviation): Figure 1

suggests that the deviation between international education-specific mortality and
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Dutch education-specific mortality fluctuates around a (small) constant. Therefore,

we select an ARIMA(0,0,0) process with constant for this deviation:

K
(3),g,e,NL
t = c(3),g,e,NL + u

(3),g,e,NL
t , , for e = l,m, h, (16)

where u
(3),g,e,NL
t ∼ N(0, σ2

g,e).

The selected time series processes for the second and third layer are summarized in Table

3. The selection is the same for males and females.

Low Medium High

K
(2),g,e
t RWD AR1 RWD

K
(3),g,e,NL
t ARIMA(0,0,0) with constant ARIMA(0,0,0) with constant ARIMA(0,0,0) with constant

Table 3: Time series processes for K
(2),g,e
t and K

(3),g,e,NL
t

3.3 Parameter estimation

In each layer we use the estimation procedure described in Liu et al. (2019) combined with

interpolation/extrapolation to account for the fact that the data for the three layers has

different levels of granularity. Specifically, the data for the HMD population is available for

t ∈ {1970, 1971, . . . , 2016}, international education-specific mortality is available only for

t ∈ {1993, 1998, 2003, 2008, 2013}, and international education-specific mortality is avail-

able for t ∈ {2006, 2007, . . . , 2018}. Therefore, in the first and second layer we first estimate

the model parameters with the available data, using the estimation procedure described in

Liu et al. (2019). We then use extrapolation to extend the HMD data till 2018 in layer 1

and we use interpolation and extrapolation to create yearly data for the period 2006 until

2018 in layer 2.
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First layer

For K
(1),g
t , we selected a RWD process, i.e., K

(1),g
t = µ(1),g + K

(1),g
t−1 + ε

(1),g
t . The trend is

estimated using international mortality data for the years for t ∈ {1970, 1971, . . . , 2016}:

µ̂(1),g = arg min
µ(1),g

2016∑
t=1971

[
Z

(1),g
t − µ(1),g − Z(1),g

t−1

]2
= Z

(1),g
2016 − Z

(1),g
1970

46 . (17)

Then, Â
(1),g
x and B̂

(1),g
x are obtained by solving the least squares problem:

min
A

(1),g
x ,B

(1),g
x

∑
x

2016∑
t=1970

[
ln(mg

x,t)−A(1),g
x −B(1),g

x Z
(1),g
t

]2
, (18)

This yields (see Liu et al. (2019)):

Â(1),g
x =

∑
t ln(mg

x,t)
∑
t[Z

(1),g
t ]2 −

∑
t ln(mg

x,t)Z
(1),g
t

∑
t Z

(1),g
t

47
∑
t[Z

(1),g
t ]2 − (

∑
t Z

(1),g
t )2

, (19)

B̂(1),g
x =

47
∑
t ln(mg

x,t)Z
(1),g
t −

∑T
t=1 ln(mg

x,t)
∑
t Z

(1),g
t

47
∑
t[Z

(1),g
t ]2 − (

∑
t Z

(1),g
t )2

. (20)

Because Dutch education-specific data is available also for t = 2017 and t = 2018, we gener-

ate“pseudo”data for these years for international mortality using the estimated parameters

and the extrapolated trend, i.e., for t ∈ {2017, 2018}:

ln mg
x,t = Â(1),g

x + B̂(1),g
x K̂

(1),g
t = Â(1),g

x + B̂(1),g
x

[
Z

(1),g
2016 + (t− 2016)µ̂(1),g

]
. (21)

Second layer

We first estimate the model parameters for each educational level in layer 2 using data

for years 1993, 1998, 2003, 2008, and 2013. We then use the estimated parameters to

interpolate and extrapolate the data to the range t ∈ {1993, 1994, . . . , 2018}.

Low and high education: we selected an RWD process for K
(2),g,e
t , i.e., K

(2),g,e
t =

9



µ(2),g,e + K
(2),g,e
t−1 + ε

(1),g,e
t . Because international education-specific mortality data is used

only for t ∈ {1993, 1998, 2003, 2008, 2013}, we let tj = 1993 + 5(j − 1) for j = 1, 2, . . . 5.

Then, the least squares estimator µ̂(2),g,e is given by:

µ̂(2),g,e = arg min
µ(2),g,e

5∑
j=2

[
Z

(2),g,e
tj − 5µ(2),g,e − Z(2),g,e

tj−1

]2
= Z

(2),g,e
2013 − Z(2),g,e

1993
20 . (22)

Then, Â
(2),g,e
x and B̂

(2),g,e
x are obtained by solving the least squares problem:

min
A

(2),g,e
x ,B

(2),g,e
x

5∑
j=1

∑
x

[ln(mg,e
x,tj )− ln(mg

x,tj )−A(2),g,e
x −B(2),g,e

x Z
(2),g
tj ]2. (23)

Hence, Â
(2),g,e
x and B̂

(2),g,e
x are as in (19) and (20), with t ∈ {1970, 1971, . . . , 2016} replaced

by tj ∈ {1993, 1998, 2003, 2008, 2013} and ln(mg
x,t) replaced by ln(mg,e

x,tj )− ln(mg
x,tj ).

Middle education: we selected an ARIMA(1,0,0) process, i.e.,: K
(2),g,m
t = φ

(2),g,m
0 +

φ
(2),g,m
1 K

(2),g,m
t−1 + ε

(2),g,m
t , where ε

(2),g,m
t are innovations with mean zero and finite variance.

Again let tj = 1993 + 5(j − 1) for j = 1, 2, . . . 5. Then, it holds that:

K
(2),g,m
tj = ϕ

(2),g,m
0 + ϕ

(2),g,m
1 K

(2),g,e
tj−1 + ε̃(2),g,m, for j = 2, 3, 4, 5, (24)

where

ϕ
(2),g,m
0 = φ

(2),g,m
0

[
1 + φ

(2),g,m
1 +

(
φ

(2),g,m
1

)2
+
(
φ

(2),g,m
1

)3
+
(
φ

(2),g,m
1

)4
]
, (25)

ϕ
(2),g,m
1 =

(
φ

(2),g,m
1

)5
. (26)

The least-square problem for the parameters in (24) for e = m is:

min
ϕ

(2),g,e
0 ,ϕ

(2),g,e
1

5∑
j=2

[
Z

(2),g,e
tj − ϕ(2),g,e

0 − ϕ(2),g,e
1 Z

(2),g,e
tj−1

]2
, (27)
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We use the bias-corrected estimation in Liu et al. (2019), which is an instrumental variable

(IV) regression with the lagged variable Z
(2),g,e
tj−2 as an instrument for Z

(2),g,e
tj−1 . This IV

regression addresses potential endogeneity problems that arise if the independent variable

is correlated with the innovation term. This yields for e = m (see Liu et al. (2019)):

ϕ̂
(2),g,e
0 =

∑5
s=3 Z

(2),g,e
ts

∑5
j=3[Z(2),g,e

tj−1 Z
(2),g,e
tj−2 ]−

∑5
s=3 Z

(2),g,e
ts−1

∑5
j=3[Z(2),g,e

tj Z
(2),g,e
tj−2 ]

(5− 2)
∑5
j=3[Z(2),g,e

tj−1 Z
(2),g,e
tj−2 ]−

∑5
s=3 Z

(2),g,e
ts−1

∑5
j=3 Z

(2),g,e
tj−2

,

ϕ̂
(2),g,e
1 =

(5− 2)
∑5
s=3[Z(2),g,e

ts Z
(2),g,e
ts−2 ]−

∑5
s=3 Z

(2),g,e
ts

∑5
j=3 Z

(2),g,e
tj−2

(5− 2)
∑5
s=3[Z(2),g,e

ts−1 Z
(2),g,e
ts−2 ]−

∑5
s=3 Z

(2),g,e
ts−1

∑5
j=3 Z

(2),g,e
tj−2

.

The corresponding parameter estimates φ̂
(2),g,e
0 and φ̂

(2),g,e
1 for e = m now follow from (25)

and (26), i.e.,:

φ̂
(2),g,m
1 =

(
ϕ̂

(2),g,m
1

) 1
5 , (28)

φ̂
(2),g,m
0 = ϕ̂

(2),g,m
0 /

[
1 + ϕ̂

(2),g,m
1 +

(
ϕ̂

(2),g,m
1

)2
+
(
ϕ̂

(2),g,m
1

)3
+
(
ϕ̂

(2),g,m
1

)4
]
. (29)

Moreover, the estimates of A
(2),g,e
x and B

(2),g,e
x for e = m are given by:

Â(2),g,e
x =

∑5
s=3 ∆ ln mg,e

x,ts

∑5
j=3[Z(2),g,e

tj Z
(2),g,e
tj−1 ]−

∑5
s=3 ∆ ln mg,e

x,tsZ
(2),g,e
ts−1

∑5
j=3 Z

(2),g,e
tj

(5− 2)
∑5
j=3[Z(2),g,e

tj Z
(2),g,e
tj−1 ]−

∑5
s=3 Z

(2),g,e
ts

∑5
j=3 Z

(2),g,e
tj−1

,

B̂(2),g,e
x =

(5− 2)
∑5
s=3 ∆ ln mg,e

x,tsZ
(2),g,e
ts−1 −

∑5
s=3 ∆ ln mg,e

x,ts

∑5
j=3 Z

(2),g,e
tj−1

(5− 2)
∑5
j=3[Z(2),g,e

tj Z
(2),g,e
tj−1 ]−

∑5
s=3 Z

(2),g,e
ts

∑5
j=3 Z

(2),g,e
tj−1

,

where ∆ ln mg,e
x,ts = ln(mg,e

x,t)− ln(mg
x,t).

Interpolation and extrapolation of Z
(2),g,e
t . Because we have estimated the parameters

of layer 2 based on international education-specific data for tj ∈ {1993, 1998, 2003, 2008, 2013}

but Dutch education-specific data is available on one-year basis for the years t ∈ {2006, 2007, . . . , 2018},
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we generate“pseudo”data for international mortality in years t ∈ {2006, 2007}∪{2009, . . . , 2012}∪

{2014, . . . , 2018} using the estimated parameters and the interpolated/extrapolated trend.

Specifically, for t ∈ {2006, 2007} ∪ {2009, . . . , 2012} ∪ {2014, . . . , 2018} we let:

ln mg,e
x,t = Â(2),g,e

x + B̂(2),g,e
x K̂

(2),g,e
t , (30)

where K̂
(2),g,e
t = Z

(2),g,e
t for t ∈ {2003, 2008, 2013}, and:

K̂
(2),g,e
t = µ̂(2),g,e + K̂

(2),g,e
t−1 , for e ∈ {l, h}, (31)

K̂
(2),g,m
t = φ̂

(2),g,m
0 + φ̂

(2),g,m
1 K̂

(2),g,m
t−1 , (32)

for t ∈ {2004, . . . , 2007} ∪ {2009, . . . , 2012} ∪ {2014, . . . , 2018}.

Third layer

For K
(3),g,e,NL
t , we selected an ARIMA(0,0,0) process with a constant, i.e., K

(3),g,e,NL
t =

c(3),g,e,NL + u
(3),g,e,NL
t , where u

(3),g,e,NL
t follows a normal distribution with zero mean and

finite variance σ2
(3),g,e. The constant c(3),g,e,NL can be estimated by:

ĉ(3),g,e,NL =
∑2018
t=2006 Z

(3),g,e,NL
t

13 .

Moreover, Â
(3),g,e,NL
x and B̂

(3),g,e,NL
x are as in (19) and (20), with t ∈ {1970, 1971, . . . , 2016}

replaced by t ∈ {2006, . . . , 2018} and ln(mg
x,t) replaced by ln(mg,e,NL

x,t )− ln(mg,e
x,t).

4. Projection

Best estimate projections for Dutch education-specific log mortality (ln mg,e,NL
x,t ) by gender

for x ∈ {35− 39, 40− 44, . . . , 80− 84} and future years t = 2019, 2020, . . . are obtained by
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combining (1), (3), and (5) and substituting in the parameter estimates. This yields:

ln m̂g,e,NL
x,t = Â(1),g

x + Â(2),g,e
x + Â(3),g,e,NL

x (33)

+B̂(1),g
x K̂

(1),g
t + B̂(2),g,e

x K̂
(2),g,e
t +B(3),g,e,NL

x K̂
(3),g,e,NL
t ,

where

K̂
(1),g
t = µ̂(1),g + K̂

(1),g
t−1 , (34)

K̂
(2),g,e
t = µ̂(2),g,e + K̂

(2),g,e
t−1 , for e = l, h, (35)

K̂
(2),g,m
t = φ̂

(2),g,m
0 + φ̂

(2),g,m
1 K

(2),g,e
t−1 , (36)

K̂
(3),g,e,NL
t = ĉ(3),g,e,NL, (37)

with K̂
(1),g
2018 = Z

(1),g
2018 , K̂

(2),g,e
2018 = Z

(2),g,e
2018 , and K̂

(3),g,e,NL
2018 = Z

(3),g,e,NL
2018 .

5. Old age extrapolation

The model and its parameters are estimated for age groups x ∈ {35−39, 40−44, . . . , 80−84}.

To extrapolate central mortality rates to age groups x ∈ {85−89, ..., 105−109}, we rely on

the extrapolation that was implemented in the HMD for Dutch central death rates. The

HMD provides central death rates for ages 0, 1-4, 5-9, ...., 75-79, 80-84, ..., 105-109, 110+

and years 1850, 1851, 1852, ..., 2006, 2007, ..., 2017, 2018, where central death rates for age

groups above 80-84 are extrapolated using Kannisto.2 For each gender and each age group

x ∈ {80 − 84, ..., 105 − 109}, we let mg,NL
x,t be the central death rate from HMD for the

Netherlands. Moreover, for each age group x, we define x−1 as the age group just below x,

2We obtain the 5 × 1 life table of both genders of the Netherlands from HMD https://www.mortality.

org/hmd/NLD/STATS/mltper_5x1.txt for male and the one with ’fltper’ is for female. According to HMD
protocol v6, death rates of ages above 80 are smoothed using the Kannisto method.
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e.g., for x = 85− 89, it holds that x−1 = 80− 84. Then, we let

∆g
x,t = ln(

mg,NL
x,t

1−mg,NL
x,t

)− ln(
mg,NL
x−1,t

1−m
xg,NL

−1 ,t

),

for age groups x ∈ {85− 89, ..., 105− 109} and years t ∈ {2006, 2007, ..., 2017, 2018}.

Now, Dutch education-specific mortality rates for gender g and years t ∈ {2006, 2007, ..., 2017, 2018}

are extrapolated to age groups x ∈ {85− 89, ..., 105− 109} as follows:

ln(
mg,e,NL
x,t

1−mg,e,NL
x,t

)− ln(
mg,e,NL
x−1,t

1−mg,e,NL
x−1,t

) = ∆g
x,t. (38)
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