Supplementary Information

Mathematical modelling of vaccination rollout and NPIs lifting on COVID-19 transmission with VOC: a case study in Toronto, Canada

Elena Aruffo^{1,2*}, Pei Yuan^{1,2*}, Yi Tan^{1,2*}, Evgenia Gatov³, Iain Moyles^{1,2}, Jacques Bélair^{1,5}, James Watmough^{1,6}, Sarah Collier³, Julien Arino^{1,4}, Huaiping Zhu^{1,2}[†]

¹ Centre for Disease Modelling (CDM), York University, Toronto, Canada

² Department of Mathematics and Statistics, York University, Toronto, Canada

³ Toronto Public Health, City of Toronto, Toronto, ON, Canada.

- ⁴ Department of Mathematics, University of Manitoba, Winnipeg, Manitoba, Canada
- ⁵ Département de Mathématiques et de Statistique, Université de Montréal, Montréal, Québec, Canada

⁶ Department of Mathematics and Statistics, University of New Brunswick, Fredericton, New Brunswick, Canada

* Co-first authors made equal contributions.

† Corresponding Author: huaiping@yorku.ca,

4700 Keele Street, Toronto, Ontario, Canada, M3J1P3

Model

The system of ODEs describing the dynamic is given by:

$$\begin{split} S_{i}^{\prime} &= -\lambda_{s_{i}} - \phi_{i} S_{i} \left\{ \left(1 - b(t)\right) \left[\beta^{o} \sum_{j}^{6} c_{ij}(A_{i} + \xi I_{m_{i}}) \right] \right\} + \omega_{1} V_{1i} + \omega_{2} V_{2i} \\ &+ b(t) \left[\beta^{N} \sum_{j}^{6} c_{ij}(A_{i} + \xi I_{m_{i}}) \right] \right\} + \omega_{1} V_{1i} + \omega_{2} V_{2i} \\ L_{i} &= \phi_{i} S_{i} \left\{ \left(1 - b(t)\right) \left[\beta^{o} \sum_{j}^{6} c_{ij}(A_{i} + \xi I_{m_{i}}) \right] - b(t) \left[\beta^{N} \sum_{j}^{6} c_{ij}(A_{i} + \xi I_{m_{i}}) \right] \right\} \\ &+ \phi_{i} V_{1i} (1 - \epsilon_{1i}) \left\{ \left(1 - b(t)\right) \left[\beta^{o} \sum_{j}^{6} c_{ij}(A_{i} + \xi I_{m_{i}}) \right] \right\} \\ &+ b(t) \left[\beta^{N} \sum_{j}^{6} c_{ij}(A_{i} + \xi I_{m_{i}}) \right] \right\} - (1 - b(t)) \alpha^{o} L_{i} - b(t) \alpha^{N} L_{i} \\ A_{i}^{\prime} &= (1 - \rho) (1 - b(t)) \alpha^{o} L_{i} + (1 - \rho) b(t) \alpha^{N} L_{i} - (1 - b(t)) \gamma_{aR_{i}}^{o} A_{i} \\ &- b(t) \gamma_{aR_{i}}^{N} A_{i} \\ I'_{m_{i}} &= \rho (1 - b(t)) \alpha^{o} L_{i} + \rho b(t) \alpha^{N} L_{i} - (1 - b(t)) \gamma_{H_{i}}^{o} I_{m_{i}} - b(t) \gamma_{H_{i}}^{N} I_{m_{i}} \\ - (1 - b(t)) \gamma_{aR_{i}}^{o} I_{m_{i}} - b(t) \gamma_{mR_{i}}^{N} I_{m_{i}} \\ H_{i}^{\prime} &= (1 - b(t)) \gamma_{H_{i}}^{o} I_{m_{i}} + b(t) \gamma_{H_{i}}^{N} I_{m_{i}} - (1 - b(t)) \gamma_{RR_{i}}^{o} I_{m_{i}} + b(t) \gamma_{RR_{i}}^{N} I_{m_{i}} \\ H_{i}^{\prime} &= (1 - b(t)) \gamma_{aR_{i}}^{o} A_{i} + b(t) \gamma_{AR_{i}}^{N} A_{i} + (1 - b(t)) \gamma_{mR_{i}}^{o} I_{m_{i}} + b(t) \gamma_{mR_{i}}^{N} I_{m_{i}} \\ + (1 - b(t)) \gamma_{RR_{i}}^{o} H_{i} + b(t) \gamma_{RR_{i}}^{N} H_{i} \\ B_{i}^{\prime} &= (1 - b(t)) \gamma_{RR_{i}}^{o} A_{i} + b(t) \gamma_{RR_{i}}^{N} A_{i} + (1 - b(t)) \gamma_{mR_{i}}^{O} I_{m_{i}} + b(t) \gamma_{mR_{i}}^{N} I_{m_{i}} \\ + (1 - b(t)) \gamma_{RR_{i}}^{O} H_{i} + b(t) \gamma_{RR_{i}}^{N} H_{i} \\ V_{1i} &= \lambda_{s_{i}} - \phi_{i} V_{1i} (1 - \epsilon_{1i}) \left\{ (1 - b(t)) \left[\beta^{o} \sum_{j}^{6} c_{ij} (A_{i} + \xi I_{m_{i}}) \right] \right\} - \sigma \epsilon_{2_{i}} V_{1i} - \omega_{1} V_{1i} \\ V_{2i} &= \sigma \epsilon_{2_{i}} V_{1i} - \omega_{2} V_{2i} \\ \end{array}$$

For $i \in \{1,2,3,4,5,6\}$, where $\beta^N = \zeta \beta^O$.

Eq.SI1

The list of variables and assumptions is given in Table SI1.

Variable	Definition
S _i	Susceptible individuals in age group i
Li	Latently infected individuals in age group i
A _i	Asymptomatic individuals in age group i
I _{mi}	Symptomatic (mild) individuals in age group i
H _i	Hospitalized individuals in age group i
D _i	Deceased individuals in age group i
R _i	Recovered individuals in age group i
V _{1i}	Vaccinated individuals in age group i (first dose)
V _{2i}	Vaccinated individuals in age group i (second dose)
i ∈ {1,2,3,4,5,6}	Age groups: 0-9,10- 19, 20-39, 40-59, 60-79, 80+ years respectively
Assumptions	
1. Only susceptible	individuals, aged 10 years and older, will receive the vaccine
2. Immunity follows	s two steps: partial (receiving one dose) and full (receiving two doses)
3. The vaccine effic	acy is age-dependent (higher for teenagers and adults, lower for elderly)
4. The vaccine effic	acy is the same against wildtype variant and VOC
5. The second dose following the sug	is given after 112 days (in some predictive scenarios after 50 or 21 days), gestion announced by the Government of Ontario in March 2021
6. Immunity wanes days	from one dose of vaccine after 120 days and from two doses after 365
7. We assume that t vaccination proce	he coverages in Table 2 are reached by June 14, 2021, and continue the ass until 80% of the total population is vaccinated
8. We assume that a	ll non-wild type cases belong to B.1.1.7
9. VOC and wildtyp of cases from VO	e are both included in the transmission process, assuming that proportion C increases by time, following a sigmoidal function
10. The transmission	from VOC is assumed to be 1.5 higher than the original variant
11. Vaccine reduces infectious if the v	susceptibility. Partially vaccinated people can become infected and accine is not efficient
12. Only individuals	hospitalized might die from the infection

Table SI1: Table of the model's variables and assumptions

Parameter	Definition	Value	Ref.
λ_{s_i}	Average daily vaccine doses given at age group i	daily doses from data	[1]
ϕ_i	Susceptibility		[2]
	for age group i	0.34 0.34 1 1 1.67 1.67	[2]
C_{ij}	D 1 di	0 (712220((04250)	
	Reduction	0.671233066942591 Phase I	Estim ated
		0.751639442206889 Phase II	utcu
		0.693229501323643 Phase III	
		0.707785478752892 Phase IV	
β	Probability of transmission	1.87421367499059e-07	Estim ated
ζ	Increase in transmission from VOC	1.5	Assum ed [4,5,6, 7]
ξ	Proportion of mild cases not adhering to self- isolation rule	0.225593198112631	Estim ated
α ^{0,N}	average time in latent period	1/4 days-1	[8,9] (assu med for VOC)
ρ	Proportion of symptomatic individuals	0.8	[10]
$\gamma^{O,N}_{aR_i}$	Recovery rate from asymptomatic infection	1/6 days ⁻¹	[11]
$\gamma_{H_i}^o$	Hospitalization	0.0022 0.0004 0.0021 0.0082 0.0346 Phase I	Estim
	rate of individuals in	0.0015 0.0013 0.0030 0.0072 0.0302 Phase II	ated
	group I, infected	0.0759	4
	with old variant	0.0926	
		0.0010 0.0004 0.0024 0.0073 0.0235 Phase IV 0.0554 Phase IV	
$\gamma_{H_i}^N$		0 0 0 0 0.1927 0.0856 Phase I	

Table SI2: Table of model parameters

$\begin{split} & \prod_{n \ n \ n \ n \ n \ n \ n \ n \ n \ n \$		Hospitalization rate of	0.0017 0.0012 0.0042 0.0114 0.0579 Phase II 0.1139 Phase II	Estim ated
$ \begin{split} & \left \begin{array}{c} 0.0014 & 0.0006 & 0.0041 & 0.0087 & 0.0306 & Phase IV \\ 0.0906 & 0.0996 & 0.0968 & 0.0967 & 0.0860 & Phase I \\ 0.0704 & 0.0993 & 0.0994 & 0.0986 & 0.0967 & 0.0860 & Phase II \\ 0.0706 & 0.0993 & 0.0990 & 0.0970 & 0.0902 & Phase II \\ 0.0905 & 0.0998 & 0.0990 & 0.0970 & 0.0902 & Phase II \\ 0.0905 & 0.0998 & 0.0990 & 0.0970 & 0.0902 & Phase II \\ 0.0905 & 0.0998 & 0.0990 & 0.0970 & 0.0902 & Phase II \\ 0.0905 & 0.0998 & 0.0990 & 0.0970 & 0.0902 & Phase II \\ 0.0907 & 0.0998 & 0.0990 & 0.0941 & 0.0004 & 0.1000 & 0.1000 & 0.1000 & 0.1000 & 0.1000 & 0.00250 & Phase II \\ 0.0970 & 0.0997 & 0.0996 & 0.0981 & 0.0947 & 0.0732 & Phase II \\ 0.0970 & 0.0997 & 0.0996 & 0.0929 & 0.0798 & Phase III \\ 0.0997 & 0.0997 & 0.0996 & 0.0022 & 0.0798 & Phase III \\ 0.0997 & 0.0997 & 0.0996 & 0.0023 & Phase III \\ 0 & 0 & 0.0021 & 0.0063 & 0.0169 & 0.023 & Phase III \\ 0 & 0 & 0.0022 & 0.0063 & 0.0169 & 0.023 & Phase III \\ 0 & 0 & 0.0022 & 0.0063 & 0.0169 & 0.023 & Phase III \\ 0 & 0 & 0.0022 & 0.0016 & 0.0095 & Phase III \\ 0 & 0 & 0.0022 & 0.0016 & 0.0095 & Phase III \\ 0 & 0 & 0.0022 & 0.0016 & 0.0095 & Phase III \\ 0 & 0 & 0.0022 & 0.0016 & 0.0095 & Phase III \\ 0 & 0 & 0.0022 & 0.0016 & 0.0095 & Phase III \\ 0 & 0 & 0.0022 & 0.0016 & 0.0095 & Phase III \\ 0 & 0 & 0.0022 & 0.0016 & 0.0095 & Phase III \\ 0 & 0 & 0.0022 & 0.0017 & 0.0481 & Phase III \\ 0 & 0 & 0.0022 & 0.0017 & 0.0481 & Phase III \\ 0 & 0 & 0.0022 & 0.0017 & 0.0174 & Phase III \\ 0 & 0 & 0.0023 & 0.0017 & 0.0174 & Phase III \\ 0.0386 & 0.0386 & 0.0370 & 0.012 & 0.018 & Phase III \\ 0.0386 & 0.0386 & 0.0370 & 0.012 & 0.018 & Phase III \\ 0.0386 & 0.0380 & 0.0173 & 0.1073 & 0.0173 & 0.0173 & 0.0173 & 0.0715 & Phase III \\ 0.0423 & 0.1033 & 0.1034 & 0.1034 & 0.1034 & 0.1034 & 0.1044 & Phase III \\ 0.0423 & 0.1034 & 0.1034 & 0.1034 & 0.1034 & 0.1035 & Phase III \\ 0.0423 & 0.1034 & 0.1034 & 0.1034 & 0.1034 & 0.1035 & Phase III \\ 0.0423 & 0.1034 & 0.1034 & 0.1034 & 0.1034 & 0.1035 & Phase III \\ 0.0423 & 0.1034 & 0.1034 & 0.1034 & 0.1034 & 0.0099 & Phase III \\ 0.0423 & 0.1033 & 0.10$		individuals in group L infected	0.0007 0.0010 0.0048 0.0167 0.0479 Phase III 0.1232	
$\begin{split} & \gamma^{o}_{mR_{i}} & \begin{array}{ c c c c c } & \operatorname{Recovery rate of} & \begin{array}{ c c c c } & \begin{array}{ c c c c } & \begin{array}{ c c c } & \begin{array}{ c c c } & \begin{array}{ c } & \end{array}{ c } & \begin{array}{ c } & \end{array}{ c }$		with VOC	0.0014 0.0006 0.0041 0.0087 0.0306 Phase IV 0.0906	
$ \begin{split} & \begin{array}{c c c c c c c c c c c c c c c c c c c $	$\gamma^o_{mR_i}$	Recovery rate of individuals in	0.0991 0.0998 0.0992 0.0968 0.0865 Phase I 0.0704	Calcul ated
$\begin{split} & \begin{array}{ c c c c c c c c c c c c c c c c c c c$		group I, mildly	0.0993 0.0994 0.0986 0.0967 0.0860 Phase II 0.0649	
$\begin{split} & \left \begin{array}{c} 0.0996 & 0.0998 & 0.0990 & 0.0970 & 0.0902 \\ 0.0768 & \\ 0.0768 & \\ \end{array} \right \\ & \left \begin{array}{c} P_{mR_{1}}^{N} \\ Recovery rate of individuals in in group I, mildly infected with draw in transmission of the from old variant from old variant \\ \end{array} \right \\ & \left \begin{array}{c} 0.0992 & 0.0994 & 0.0921 & 0.0947 & 0.0732 \\ 0.0997 & 0.0992 & 0.0994 & 0.0929 & 0.0798 \\ 0.0473 & \\ \hline 0.0997 & 0.0997 & 0.0983 & 0.0964 & 0.0872 \\ 0.0621 & \\ \hline 0.0028 & 0.0067 & 0.0174 & 0.0463 & Phase II \\ \hline 0 & 0 & 0.0028 & 0.0067 & 0.0174 & 0.0463 & Phase II \\ \hline 0 & 0 & 0.0028 & 0.0067 & 0.0174 & 0.0463 & Phase II \\ \hline 0 & 0 & 0.0028 & 0.0067 & 0.0174 & 0.0463 & Phase II \\ \hline 0 & 0 & 0.0028 & 0.0067 & 0.0174 & 0.0463 & Phase II \\ \hline 0 & 0 & 0.0022 & 0.016 & 0.0095 & Phase II \\ \hline 0 & 0 & 0 & 0.0022 & 0.016 & 0.0095 & Phase II \\ \hline 0 & 0 & 0 & 0.0022 & 0.016 & 0.0095 & Phase II \\ \hline 0 & 0 & 0 & 0.0022 & 0.017 & 0.0484 & Phase II \\ \hline 0 & 0 & 0 & 0.0022 & 0.0074 & 0.0815 & Phase II \\ \hline 0 & 0 & 0 & 0.0023 & 0.0074 & 0.0815 & Phase II \\ \hline 0 & 0 & 0 & 0.0025 & 0.0074 & Phase II \\ \hline 0 & 0 & 0 & 0.0025 & 0.0074 & Phase II \\ \hline 0 & 0 & 0 & 0.0025 & 0.0074 & Phase II \\ \hline 0 & 0 & 0 & 0.0025 & 0.0074 & Phase II \\ \hline 0 & 0 & 0 & 0.0025 & 0.0074 & Phase II \\ \hline 0 & 0 & 0 & 0.0025 & 0.0074 & Phase II \\ \hline 0 & 0 & 0 & 0.0025 & 0.0074 & Phase II \\ \hline 0 & 0 & 0 & 0.0025 & 0.0074 & Phase II \\ \hline 0 & 0 & 0 & 0.0025 & 0.0074 & Phase II \\ \hline 0 & 0 & 0 & 0.0025 & 0.0074 & Phase II \\ \hline 0 & 0 & 0 & 0.0025 & 0.0074 & Phase II \\ \hline 0 & 0 & 0 & 0.0025 & 0.0074 & Phase II \\ \hline 0 & 0 & 0 & 0.0025 & 0.0074 & Phase II \\ \hline 0 & 0 & 0 & 0.0025 & 0.0074 & Phase II \\ \hline 0 & 0 & 0 & 0.0025 & 0.0074 & Phase II \\ \hline 0 & 0 & 0 & 0.0025 & 0.0074 & Phase II \\ \hline 0 & 0.033 & 0.1073 & 0.1073 & 0.1073 & 0.1073 & Phase II \\ \hline 0 & 0.034 & 0.1034 & 0.1034 & 0.1012 & 0.0108 & Phase II \\ \hline 0 & 0.035 & 0.0073 & Phase II \\ \hline 0 & 0.035 & 0.0073 & Phase II \\ \hline 0 & 0.035 & 0.0073 & 0.0073 & Phase II \\ \hline 0 & 0.035 & 0.0073 & 0.0073 & 0.0073 & Phase II \\ \hline 0 & 0.033 & 0.1073 & 0.1073 & 0.1073 & 0.1073 & Phase II \\ \hline 0 & 0.035$		variant	0.0995 0.0996 0.0985 0.0955 0.0841 Phase III 0.0608	
$\begin{split} & \gamma^N_{MR_i} & \begin{array}{ccccccccccccccccccccccccccccccccccc$			0.0996 0.0998 0.0990 0.0970 0.0902 Phase IV 0.0768	
$ \begin{split} & $	$\gamma^N_{mR_i}$	Recovery rate of individuals in	0.1000 0.1000 0.1000 0.1000 0.0250 Phase I 0.0667	Calcul ated
$\begin{split} & \begin{array}{c} & \begin{array}{c} & \begin{array}{c} \left \begin{array}{c} 0.0997 & 0.0996 & 0.0929 & 0.0798 \\ 0.0479 \end{array} \right & \begin{array}{c} 0.0947 & 0.0983 & 0.0964 & 0.0872 \\ 0.0621 \end{array} \right & \begin{array}{c} 0.0997 & 0.0983 & 0.0964 & 0.0872 \\ 0.0621 \end{array} \right & \begin{array}{c} 0 \\ 0.0021 \end{array} \right & \begin{array}{c} 0 \\ 0.0022 & 0.0067 & 0.0174 & 0.0463 \end{array} \right & \begin{array}{c} 0 \\ Phase II \\ \hline 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\$		group I, mildly	0.0992 0.0994 0.0981 0.0947 0.0732 Phase II 0.0473	
$\begin{split} \mu_{H_{1}}^{o} & \begin{array}{ccccccccccccccccccccccccccccccccccc$		VOC	0.0997 0.0996 0.0980 0.0929 0.0798 Phase III 0.0479	
$ \begin{split} \mu^{o}_{H_{l}} & \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$			0.0994 0.0997 0.0983 0.0964 0.0872 Phase IV 0.0621 Phase IV	
$\begin{split} \mathcal{F}_{H_{I}} & \begin{tabular}{ c c c c c c c } from old variant & \hline 0 & 0 & 0.0012 & 0.0068 & 0.0169 & 0.0284 & Phase II & \hline 0 & 0 & 0 & 0.0029 & 0.0168 & 0.0095 & Phase III & \hline 0 & 0 & 0 & 0 & 0.0229 & Phase III & \hline 0 & 0 & 0 & 0 & 0.0229 & 0.016 & 0.0095 & Phase II & \hline 0 & 0 & 0 & 0.0020 & 0.0037 & 0.0122 & 0.0309 & Phase II & \hline 0 & 0 & 0 & 0.0020 & 0.0037 & 0.0122 & 0.0309 & Phase III & \hline 0 & 0 & 0 & 0 & 0.0025 & 0.0074 & Phase III & \hline 0 & 0 & 0 & 0.0025 & 0.0074 & Phase III & \hline 0 & 0.0386 & & & & & & & & & & & & & & & & & & &$	μ_{μ}^{o}	Mortality rate	0 0 0.0028 0.0067 0.0174 0.0463 Phase I	Estim
$ \begin{split} \mu_{H_{i}}^{N} & \begin{array}{c c c c c c c c c c c c c c c c c c c $	- 111	from old variant	0 0 0.0012 0.0068 0.0169 0.0284 Phase II	ated
$ \begin{split} \mu_{H_{i}}^{N} & \begin{array}{ccccccccccccccccccccccccccccccccccc$			0 0 0.0080 0.0049 0.0129 0.0279 Phase III	_
$\mu_{H_{I}}^{u} = Mortanty rate from VOC = 0 = 0 = 0 = 0 = 0 = 0 = 0 = 0 = 0 = $	N	Mantalitan mata	0 0 0 0.0022 0.0016 0.0095 Phase IV	E . 4
rom VOC 0 0 0 0 0 0.0020 0.0037 0.0122 0.0399 Phase III Phase III ated $\gamma_{HR_1}^0$ Recovery rate of hospitalized individuals in group I, mildly infected with old variant 0.1073 0.1073 0.1031 0.0974 0.0815 Phase I Estim ated $\gamma_{HR_1}^N$ Recovery rate of hospitalized individuals in group I, mildly infected with old variant 0.1535 0.1535 0.1506 0.1379 0.1146 Phase II Estim ated $\gamma_{HR_1}^N$ Recovery rate of hospitalized individuals in group I, mildly infected with VOC 0.1073 0.1073 0.1073 0.1073 0.1073 0.1073 0.1073 0.0173 0.0107 Phase II Estim ated $\gamma_{HR_1}^N$ Recovery rate of hospitalized individuals in group I, mildly infected with VOC 0.1073 0.1073 0.1073 0.1073 0.1073 0.1073 0.1074 Phase II Estim ated δ_{11}^{IR} Efficacy first dose for age group i 0.1034 0.1034 0.1034 0.1009 0.0959 Phase III 0.1034 0.1034 0.1034 0.1099 0.1085 Phase III 0.1034 0.1034	$\mu_{H_i}^{\prime}$	Mortality rate	0 0 0 0 0 0.0241 0 Phase II	Esum
$v_{HR_i}^0$ Recovery rate of hospitalized individuals in group I, mildly infected with old variant 0.1073 0.1073 0.1073 0.1073 0.1073 0.1074 Phase IV $\gamma_{HR_i}^N$ Recovery rate of hospitalized individuals in group I, mildly infected with old variant 0.1535 0.1536 0.1379 0.1174 0.1077 Phase II Estim ated $\gamma_{HR_i}^N$ Recovery rate of hospitalized individuals in group I, mildly infected with VOC 0.1034 0.1034 0.1012 0.1018 Phase IV Estim ated $\gamma_{HR_i}^N$ Recovery rate of hospitalized individuals in group I, mildly infected with VOC 0.1073 0.1073 0.1073 0.1073 0.1073 0.1074 Phase II Estim ated $\delta_{0.423}^N$ 0.1034 0.1034 0.1012 0.1018 Phase II Estim ated $\delta_{0.423}^N$ 0.1033 0.1073 0.1073 0.1073 0.1074 Phase II Estim ated $\delta_{0.423}^N$ 0.1034 0.1034 0.1034 0.1099 0.999 Phase II Estim ated $\delta_{0.1333}^N$ 0.1034 0.1034 0.1034 0.1099 0.999 Phase II III IIII		from VOC	0 0 00020 00037 00122 00309 Phase III	alea
$\gamma^{O}_{HR_{i}}$ Recovery rate of hospitalized individuals in group I, mildly infected with old variant 0.1073 0.1073 0.1073 0.0074 0.0815 Phase I Estim ated $\gamma^{N}_{HR_{i}}$ Recovery rate of hospitalized individuals in group I, mildly infected with old variant 0.1034 0.1034 0.1012 0.1012 0.1018 Phase II Estim ated $\gamma^{N}_{HR_{i}}$ Recovery rate of hospitalized individuals in group I, mildly infected with VOC 0.1073 0.1073 0.1073 0.1073 0.1073 0.1073 0.1073 0.0173 0.0173 0.0173 0.1073 0.0173 0.1073 0.1073 0.1073 0.1073 0.1012 0.1018 Phase II Estim ated $\gamma^{N}_{HR_{i}}$ Recovery rate of hospitalized individuals in group I, mildly infected with VOC 0.1535 0.1535 0.1432 0.1391 0.1146 Phase II etded 0.1034 0.1034 0.1034 0.1034 0.1034 0.1034 0.1085 Phase III etded $\gamma^{P}_{HR_{i}}$ Efficacy first dose for age group i 0.1034 0.1034 0.1034 0.1034 0.1034 0.1034 0.1034 0.1099 0.9 0			0 0 0 0 0.0025 0.0074 Phase IV	
$\begin{split} & \kappa_{1i} & \begin{tabular}{ c c c c c c c } \hline κ_{2i} & 0.1535 & 0.1535 & 0.1506 & 0.1379 & 0.1146 & $Phase II$ \\ \hline 0.0883 & 0.1233 & 0.1136 & 0.1174 & 0.1077 & $Phase III$ \\ \hline 0.0895 & 0.1034 & 0.1012 & 0.1018 & $Phase IV$ \\ \hline 0.0937 & 0.1034 & 0.1012 & 0.1012 & 0.1018 & $Phase IV$ \\ \hline 0.0937 & 0.1073 & 0.1073 & 0.1073 & 0.1073 & 0.0715 & $Phase I$ \\ \hline 0.0895 & 0.1535 & 0.1432 & 0.1391 & 0.1146 & $Phase I$ \\ \hline 0.0937 & 0.1073 & 0.1073 & 0.1073 & 0.0715 & $Phase I$ \\ \hline 0.1073 & 0.1034 & 0.1034 & 0.1034 & 0.1034 & 0.1034 & 0.1034 & 0.1034 & 0.1034 & 0.109 & 0.959 & $Phase III$ \\ \hline κ_{1i} & Efficacy first dose for age group i & 0.8 & 0.8 & 0.8 & 0.7 & 0.7 & 0.7 & $ed [12]$ \\ \hline κ_{2i} & Efficacy second dose for age group i & 0.9 & 0.9 & 0.9 & 0.9 & 0.8 & $	$\gamma^{O}_{HR_{i}}$	Recovery rate of hospitalized	0.1073 0.1073 0.1031 0.0974 0.0815 Phase I 0.0386 Phase I	Estim ated
$\begin{split} & \kappa_{1i} & \text{infected with old} \\ \text{variant} & \begin{array}{c} 0.1233 \\ 0.1233 \\ 0.1233 \\ 0.0895 \end{array} & \begin{array}{c} 0.1174 \\ 0.1071 \\ 0.00895 \end{array} & \begin{array}{c} 0.1077 \\ 0.1012 \\ 0.1012 \\ 0.1012 \\ 0.1012 \\ 0.1018 \\ 0.1012 \\ 0.1018 \\ 0.1012 \\ 0.1018 \\ 0.1013 \\ 0.1012 \\ 0.1018 \\ 0.1013 \\ 0.1000 \\ 0.005 \\ $		individuals in group I, mildly	0.1535 0.1535 0.1506 0.1379 0.1146 Phase II 0.0883	
$ \begin{split} & \qquad \qquad$		infected with old variant	0.1233 0.1233 0.1136 0.1174 0.1077 Phase III 0.0895	
$\gamma_{HR_i}^N$ Recovery rate of hospitalized individuals in group I, mildly infected with VOC 0.1073 0.1034 0.1034 0.1034			0.1034 0.1034 0.1034 0.1012 0.1018 Phase IV 0.0937	
$ \begin{aligned} & \begin{array}{c} \text{individuals in} \\ \text{group I, mildly} \\ \text{infected with} \\ \text{VOC} \\ & \begin{array}{c} 0.1535 & 0.1535 & 0.1432 & 0.1391 & 0.1146 \\ 0.0423 \\ \hline 0.0423 \\ \hline 0.1233 & 0.1233 & 0.1209 & 0.1188 & 0.1085 \\ \hline 0.0859 \\ \hline 0.1034 & 0. & 0.1034 & 0.1034 & 0.109 \\ \hline 0.0959 \\ \hline 0.1034 & 0. & 0.1034 & 0.1034 & 0.109 \\ \hline 0.0959 \\ \hline 0.1034 & 0. & 0.1034 & 0.109 \\ \hline 0.0959 \\ \hline 0.0859 \\ \hline 0.1034 & 0. & 0.1034 & 0.109 \\ \hline 0.0959 \\ \hline $	$\gamma^N_{HR_i}$	Recovery rate of hospitalized	0.1073 0.1073 0.1073 0.1073 0.0715 Phase I 0.1073	Estim ated
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		individuals in group I, mildly	0.1535 0.1535 0.1432 0.1391 0.1146 Phase II 0.0423	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		infected with VOC	0.1233 0.1233 0.1209 0.1188 0.1085 Phase III 0.0859 Phase III	
ϵ_{1_i} Efficacy first dose for age group iAssum 0Assum ed [12] ϵ_{2_i} Efficacy second dose for age group i00.80.80.70.7ed [12] ϵ_{2_i} Efficacy second dose for age group i00.90.90.90.80.8ed [12]			0.1034 0. 0.1034 0.1034 0.1009 0.0959 Phase IV	
dose for age group i00.80.80.70.7ed [12] ϵ_{2_i} Efficacy second dose for age group i00.90.90.90.80.8ed [12] ϵ_{2_i} Efficacy second dose for age group i	ϵ_{1i}	Efficacy first		Assum
$\epsilon_{2_i} \begin{bmatrix} \text{group i} & \text{reduced by } 0.1 \text{ in lower efficacy scenario} \\ \text{for age group i} & \text{reduced by } 0.1 \text{ in lower efficacy scenario} \\ \end{bmatrix} \begin{bmatrix} \epsilon_{2_i} & \text{for age } \\ \text{group i} & \text{reduced by } 0.1 \text{ in lower efficacy scenario} \\ \end{bmatrix} \begin{bmatrix} \epsilon_{12} & \text{for age } \\ \text{group i} & \text{reduced by } 0.1 \text{ in lower efficacy scenario} \\ \end{bmatrix} \begin{bmatrix} \epsilon_{12} & \text{for age } \\ \text{group i} & \text{reduced by } 0.1 \text{ in lower efficacy scenario} \\ \end{bmatrix} \begin{bmatrix} \epsilon_{12} & \text{for age } \\ \text{group i} & \text{for age } \\ \text{group i} & \text{for age } \\ \end{bmatrix} \begin{bmatrix} \epsilon_{12} & \text{for age } \\ \text{group i} & \text{for age } \\ \text{group i} & \text{for age } \\ \end{bmatrix} \begin{bmatrix} \epsilon_{12} & \text{for age } \\ \text{group i} & \text{for age } \\ \end{bmatrix} \begin{bmatrix} \epsilon_{12} & \text{for age } \\ \text{group i} & \text{for age } \\ \end{bmatrix} \begin{bmatrix} \epsilon_{12} & \text{for age } \\ \text{group i} & \text{for age } \\ \end{bmatrix} \begin{bmatrix} \epsilon_{12} & \text{for age } \\ \text{group i} & \text{for age } \\ \end{bmatrix} \begin{bmatrix} \epsilon_{12} & \text{for age } \\ \text{group i} & \text{for age } \\ \end{bmatrix} \begin{bmatrix} \epsilon_{12} & \text{for age } \\ \text{group i} & \text{for age } \\ \end{bmatrix} \begin{bmatrix} \epsilon_{12} & \text{for age } \\ \text{group i} & \text{for age } \\ \end{bmatrix} \begin{bmatrix} \epsilon_{12} & \text{for age } \\ \text{group i} & \text{for age } \\ \end{bmatrix} \begin{bmatrix} \epsilon_{12} & \text{for age } \\ \text{group i} & \text{for age } \\ \end{bmatrix} \begin{bmatrix} \epsilon_{12} & \text{for age } \\ \text{group i} & \text{for age } \\ \end{bmatrix} \begin{bmatrix} \epsilon_{12} & \text{for age } \\ \text{group i} & \text{for age } \\ \end{bmatrix} \end{bmatrix} \begin{bmatrix} \epsilon_{12} & \text{for age } \\ \text{group i} & \text{for age } \\ \end{bmatrix} \begin{bmatrix} \epsilon_{12} & \text{for age } \\ \text{group i} & \text{for age } \\ \end{bmatrix} \end{bmatrix} \begin{bmatrix} \epsilon_{12} & \text{for age } \\ \text{group i} & \text{for age } \\ \end{bmatrix} \end{bmatrix} \begin{bmatrix} \epsilon_{12} & \text{for age } \\ \text{group i} & \text{for age } \\ \end{bmatrix} \end{bmatrix} \begin{bmatrix} \epsilon_{12} & \text{for age } \\ \text{group i} & \text{for age } \\ \end{bmatrix} \end{bmatrix} \end{bmatrix} \begin{bmatrix} \epsilon_{12} & \text{for age } \\ \text{for age } & \text{for age } \\ \end{bmatrix} \end{bmatrix} \end{bmatrix} \begin{bmatrix} \epsilon_{12} & \text{for age } \\ \text{for age } & \text{for age } \\ \end{bmatrix} \end{bmatrix} \end{bmatrix} \begin{bmatrix} \epsilon_{12} & \text{for age } \\ \text{for age } & \text{for age } \\ \end{bmatrix} \end{bmatrix} \end{bmatrix} \begin{bmatrix} \epsilon_{12} & \text{for age } \\ \text{for age } & \text{for age } \\ \end{bmatrix} \end{bmatrix} \end{bmatrix} \begin{bmatrix} \epsilon_{12} & \text{for age } \\ \text{for age } & \text{for age } \\ \end{bmatrix} \end{bmatrix} \end{bmatrix} \end{bmatrix} \begin{bmatrix} \epsilon_{12} & \text{for age } \\ \text{for age } & \text{for age } \\ \end{bmatrix} \end{bmatrix} \end{bmatrix} \end{bmatrix} \begin{bmatrix} \epsilon_{12} & \text{for age } \\ \end{bmatrix} \end{bmatrix} \end{bmatrix} \begin{bmatrix} \epsilon_{12} & \text{for age } \\ \end{bmatrix} \end{bmatrix} \end{bmatrix} \begin{bmatrix} \epsilon_{12} & \text{for age } \\ \end{bmatrix} \end{bmatrix} \end{bmatrix} \end{bmatrix} \begin{bmatrix} \epsilon_{12} & \text{for age } \\ \end{bmatrix} \end{bmatrix} \end{bmatrix} \begin{bmatrix} \epsilon_{12} & \text{for age } \\ \end{bmatrix} \end{bmatrix} \end{bmatrix} \begin{bmatrix} \epsilon_{12} & \text{for age } \\ \end{bmatrix} \end{bmatrix} \end{bmatrix} \end{bmatrix} \begin{bmatrix} \epsilon_{12} & \text{for age } \\ \end{bmatrix} \end{bmatrix} \end{bmatrix} $	± <i>l</i>	dose for age	0 0.8 0.8 0.8 0.7 0.7	ed [12]
$\epsilon_{2_i} \qquad \begin{array}{c c} \text{Efficacy second} \\ \text{dose for age} \\ \text{group i} \end{array} \qquad \begin{array}{c c} 0 & 0.9 & 0.9 & 0.9 \\ \text{reduced by } 0.1 \text{ in lower efficacy scenario} \end{array} \qquad \begin{array}{c c} \text{Assum} \\ \text{ed [12]} \\ \text{ed [12]} \end{array}$		group i	reduced by 0.1 in lower efficacy scenario	1
dose for age 0 0.9 0.9 0.9 0.8 0.8 ed [12] group i reduced by 0.1 in lower efficacy scenario	$\epsilon_{2,i}$	Efficacy second		Assum
group i reduced by 0.1 in lower efficacy scenario		dose for age	0 0.9 0.9 0.9 0.8 0.8	ed [12]
		group i	reduced by 0.1 in lower efficacy scenario	

σ	Average time to	1/112 days-1							[13]
	receive second								
	dose	4 / 1 2 0 1 1							
ω_1	Average time to	1/120 days ⁻¹							Assum
	wane immunity								ed
	Average time to	1/365 dave-1							Accum
ω_2	Average time to	17505 days							ad
	after second								cu
	dose								
So.	Susceptible								Calcul
01	individuals in	283101 279	614	895972	826657	544	565 1	50006	ated
	age group I	L		1					
	(initial value)								
E_{0_i}	Exposed					1	1	1	Calcul
	individuals in					117			ated
	age group I	158		301	1529	1	555	265	
A	(initial value)								Cala
A_{0i}	Asymptomatic								Calcul
	age group I	46	78	340	300	152	62	2	aleu
	(initial value)								
Imo.	Symptomatic								Calcul
mol	individuals in								ated
	age group I	340 5	29	2378	1936	877	3	18	
	(initial value)								
H_{0i}	Hospitalized								Calcul
	individuals in			4	121	236	21	0	ated
	age group I	L		·	121	250		0	
D	(IIIIIai value)								Calcul
D_{0_i}	individuals in								ated
	age group I	1 0	4		79	527	13	51	uttu
	(initial value)								
R _{0i}	Recovered	2735 4637 21635	1706	0 8010 35	88				Calcul
	individuals in								ated
	age group I								
	(initial value)	0.15.1000.0000	07.27	1					<u> </u>
V _{10i}	Partially	0 15 1309 2038 5	9727.	1					Calcul
	individuals in								ated
	age group I								
	(initial value)								
V _{1 o}	Vaccinated	000000							Calcul
01	individuals in								ated
	age group I								
	(initial value)								
SENSITIVI	TY ANALYSIS P	ARAMETERS							
PARAMET	'ER	DEFINITION	1		RA	NGE	•	(uniform
					dis	tribut	ion)		

σ	Rate at which second dose is	[1/112, 1/21]
	distributed	
λ_2	Daily doses age group 10-19	[500, 2719]
λ_3	Daily doses age group 20-39	[1624, 8559]
λ_4	Daily doses age group 40-59	[2312, 8714]
λ_5	Daily doses age group 60-79	[599, 2702]
λ_6	Daily doses age group 80+	[319, 900]
C _{inc}	Percentage increase of	[0.1, 1]
	contacts	
ϕ_i	Susceptibility of age group	[0.001, 1.8]
	$i \in \{1, 2, 3, 4, 5, 6\}$	

Proportion of VOC cases

To capture the increasing trend of cases from VOC, we defined a time-dependent function (b(t)) following a sigmoid function. Fig. A1 shows the proportion of cases from VOC from data (red circles) and the function used to reproduce their trend (blue curve). According to data up to May 19, 2021 the proportion of cases from VOC in Toronto reached a maximum of 0.8 by May 11, 2021. Hence, we consider 80% to be the maximum of cases generated by the new variant.

Figure SI1: Sigmoidal function describing the growth of proportion of cases from VOC in Toronto. Scatter plot represents the proportion of VOC cases in Toronto from December 28, 2020 to May 11, 2021.

Data fitting

To calibrate the model's parameters, we employed cumulative and daily cases and deaths, and hospitalizations (**Figure SI2**). Using the Latin Hypercube Sampling (LHS), we generated 500 samples for the initial guess of each parameter using a normal distribution. Then, for each initial guess of parameter set, employed the fmincon function in the MATLAB optimization Toolbox¹⁴ to find the local minimum of the sum of squared differences between observed data and the model's estimates of daily confirmed cases and deaths, cumulative cases and deaths and hospitalizations. After finding the best parameter set for each sample, we evaluated the mean value and the standard deviation, obtaining the confidence interval where our parameters lie.

Figure SI2: Calibration of parameters calibration using Least Square Method. We used cumulative and daily cases and deaths, and hospitalizations between December 28, 2020 and May 19, 2021. Red line indicates the mean value; Blue and yellow lines indicate the upper and lower bound of the confidence interval.

Permutations of model's analysis

All the scenarios used for the projections are shown in Figure SI3. Each scenario is described by taking one element in each column.

Baseline for analyses										
10-19 years 20-39 years 40-59 years 60-79 years 80 + years NPIs Lift Level NPIs Lift Date										
20%	60%	70%	80%	80%	None	Never				

Figure SI3: Outward-facing model coverages and base line for model's analysis. All these coverages are reached by June 14, 2021. In brackets, we report the daily doses. Each scenario is described by taking one element in each column.

Uncertainty of the parameters

Figure SI4: Variation of hospitalizations with respect to the parameters estimated in the confidence interval

Contact matrix

We used the total contact matrix from a recent Canadian study³. However, the age groups used in this study were defined by a 5-year band from 0 to 80+. Our model is using larger age groups, then it was necessary to aggregate the original contact matrix in less groups.

Let's define P_j the population size of age group $j \in \{1,2,3, ..., 17\}$, where 1 = 0 - 4 years, 2 = 5 - 9 years, ..., 17 = 80 + years. To better approximate the contact rates, we calculated, from the original 17x17 matrix (M_{ij}), the total contacts that an age group has with all the other age groups. To obtain this, we multiplied all the age groups by their own population size, i.e. $m_{ij} \times P_j$. Then, to aggregate some age groups, we averaged the total contacts as follows:

• For same ages belonging to new aggregation: we summed up the diagonal entries of the submatrix related to the age groups to aggregate and the average of the mixed contacts $(\hat{c}_{ii} = \sum m_{ii} + \sum \frac{m_{ij} + m_{ji}}{2})$. For example, the new contact of the aggregated group 0-9, given by group 1 and 2, will be $m_{11} + m_{22} + \frac{m_{12} + m_{21}}{2}$

• For different ages aggregation: we summed up the average of the mixed contacts $(\hat{c}_{ij} = \sum \frac{m_{ij} + m_{ji}}{2})$. For example, the new contact of the aggregated group 0-9 and 10-19, given by group 1, 2, 3 and 4, will be $\frac{m_{13} + m_{31}}{2} + \frac{m_{14} + m_{41}}{2} + \frac{m_{23} + m_{32}}{2} + \frac{m_{24} + m_{42}}{2}$

Once we reduced the total contacts into a smaller matrix, we re-parametrized each entry of the new age group dividing the obtained contacts by the population size of the aggregate age group (i.e., $c_{ij} = \hat{c}_{ij} / \sum P_j$). Table SI3 represents the compacted matrix.

		Age participants										
		0-9	10-19	20-39	40-59	60-79	80+					
	0-9	2.61	0.55	0.59	0.73	0.22	0.04					
	10-19	0.58	3.28	0.77	0.95	0.22	0.11					
Age	20-39	2.23	2.72	3.35	3.82	1.50	0.66					
contacts	40-59	2.12	2.56	2.94	2.49	1.65	1.12					
	60-79	0.41	0.39	0.75	1.08	1.22	1.05					
	80+	0.02	0.05	0.09	0.20	0.29	0.58					

Table SI3: Contact matrix

RESULTS

Reproduction number R_c

Figure SI5: Contour plots of R_c assuming that the following coverages reached for age groups 10-19, 60-79 and 80+ years are 20%, 80%, and 90%, respectively, when the NPIs level reopening is (A) none, (B) partial, (D) total and (E) pre-pandemic. As expected, as the vaccination coverage increases, the values of the reproduction number decrease. Also, we observe that with the lowest reopening level, to reduce the reproduction number below 1, it is sufficient to vaccinate age groups 20-39 and 40-59 years above 60% and 62%, respectively. On the other hand, a relaxation of NPIs and increase in contacts as in NPIs partial reopening, the R_c will always be greater than 1. Similar results, but higher R_c , are shown with NPIs pre-pandemic reopening (C).

А

С

Projections

Identification of age group that minimizes cases, deaths and hospitalizations

Table SI4: Percentage change of cumulative cases and deaths with respect to the base line NPIs no reopening in SI Figure SI3 with partial reopening in September, when age groups 60-79 and 80+ reached coverages 80%, 90% by June 14. Cases and deaths are reported comparing different coverages for age group 10-19 years, assuming 40-59 years fixed at 70% coverage (top table) and comparing different coverages for age group 40-59 years, assuming 10-19 years fixed at 20% coverage (bottom table). The second dose is given at a rate of 1/112 days⁻¹

Projected with respe Figure S	percenta ect to bas I3 after NPIs	age change of <u>c</u> seline NPIs no i reopening in S partial reopeni	umulative cases reopening in SI eptember with ng	Projecto <u>death</u> reopening Septer	ed percen <u>s</u> with res g in SI Fi mber with	tage change o spect to baseli gure SI3 afte h NPIs partial	of <u>cumulative</u> ne NPIs no er reopening in I reopening		
20-39 years coverage by June 14, 2021					20-3 coverage by	39 years y June 14, 2021			
		60%	80%			60%	80%		
10-19 vears	20%	55.6	11.4	10-19	20%	51.5	17.1		
coverage	30%	56.7	11.1	years coverage by June 14, 2021	years coverage	years coverage	30%	52.4	17
by June 14, 2021	40%	55.5	9.03		40%	51.6	15.4		
		20-39) years			20-3	39 years		
		coverage by	June 14, 2021			coverage by June 14, 202			
		60%	80%			60%	80%		
40-59	70%	55.6	11.4	40-59	70%	51.5	17.14		
coverage	80%	36.12	2.95	years coverage	80%	36.2	10.58		
by June 14, 2021	90%	17.33	-3.25	by June 14, 2021	90%	21.45	5.72		

Identification of the best combination of vaccination coverages and NPIs lift dates

Table SI5: Percentage change of cumulative cases with respect to the baseline NPIs no reopening in SI Figure SI3 with partial, total and pre-pandemic reopening in August and September, when age groups 10-19, 60-79 and 80+ reached coverages 20%, 80%, 90%. The second dose is given at a rate of 1/112 days⁻¹.

Projected percentage change of <u>cumulative cases</u> with respect to the base line NPIs no reopening in SI Figure SI3										
In reopen in AUCUST										
				20.20		1				
				20-39 coverage by	June 14. 20	021				
			60%			80%				
NPI's Level of reopening	NPI's Level of reopening Partial Partial Pre- pandemic Partial Partial Pre- pandemic									
40-59 years	70%	130.2	632	752	43.43	578	725			
coverage by June 14,	80%	93.25	614	741	23.5	544	712			
2021	90%	56.4	586	725	9.42	498.5	698			
			Ι	n reopen in l	SEPTEMB	BER				
				20-39	years					
			(coverage by	June 14, 20	021				
			60%			80%				
NPI's Level of reopening		Partial	Total	Pre- pandemic	Partial	Total	Total			
40-59 years	70%	55.6	573	769.1	11.4	427	739.7			
coverage by June 14,	80%	36.12	533	758	2.95	345	723.8			
2021	90%	17.33	460	741.2	-3.25	256	705.5			

Table SI6 : Percentage change of cumulative deaths with respect to the base line NPIs no reopening in SI Figure SI3 with partial, total and pre-pandemic reopening in August and September, when age groups 10-19, 60-79 and 80+ reached coverages 20%, 80%, 90%. The second dose is given at a rate of 1/112 days⁻¹.

Projected percentage change of <u>cumulative deaths</u> with respect to the base line NPIs no							
reopening in SI Figure SI3							
	If reopen in AUGUST						
	20-39 years						
	coverage by June 14, 2021						
	60%	80%					

NPI's Level of reopening	Partial	Total	Pre- pandemic	Partial	Total	Pre- pandemic			
40-59 years	70%	127.3	872	1115	49.7	774.7	1116		
coverage by June 14,	80%	93.1	842.6	1113	31.9	698	1108		
2021	90%	60.1	784.8	1103	19.4	604.8	1098		
		In reopen	In reopen in SEPTEMBER						
		20-39 year	20-39 years						
		coverage	by June 14	, 2021					
		60%			80%				
NPI's Level of reopening Partial Total Pre-pandemic Partial Total Pre-pandemic				Pre- pandemic					
40-59 years	70%	51.5	633.5	1132	17.14	396.7	1093		
coverage by June 14,	80%	36.2	560.7	1119	10.6	295.4	1059		
2021	90%	21.4	440.6	1091	5.72	204.8	1012		

Figure SI6: Hospitalizations with partial reopening in August (A) if 40-59 is vaccinated 70%-00%, 20-39 60%, 80% and 10-19, 60-79 and 80+ reached coverages 20%, 80%, 90%. Cumulative cases are reported for reference. The second dose is given at a rate of $1/112 \text{ days}^{-1}$.

Identification of the best combination of vaccination coverages and NPIs lift date, with lowest efficacy

Table SI7: Percentage change of cumulative cases with respect to the base line NPIs no reopening in SI Figure SI3, reducing efficacy by 10%, with partial, total and pre-pandemic reopening when age groups 10-19, 60-79 and 80+ reached coverages 20%, 80%, 90%.

Projected percentage change of <u>cumulative cases</u> with respect to the base line NPIs no reopening in SI Figure SI3 with reopening in September and efficacy reduced by 10%									
		20-39 years							
				coverage by .	June 14, 2	021			
		60% 80%							
NPI's Level of reopening		Partial	Total	Pre- pandemic	Partial	Total	Pre- pandemic		
40-59 years	70%	84	611	784	26.62	494	756		
coverage by June 14, 2021	80%	57.7	572.7	772	14.3	433	742		
	90%	35.8	523	759	5.8	355	727		

Table SI8: Percentage change of cumulative deaths with respect to the base line NPIs no reopening in SI Figure SI3, reducing efficacy by 10%, with partial, total and pre-pandemic reopening when age groups 10-19, 60-79 and 80+ reached coverages 20%, 80%, 90%.

Projected percentage change of <u>cumulative deaths</u> with respect to the base line NPIs no reopening in SI Figure SI3 with reopening in September and efficacy reduced by 10%									
20-39 years coverage by June 14, 2021									
	60% 80%								
NPI's Level of reopening		Partial	Total	Pre- pandemic	Partial	Total	Pre- pandemic		
40-59 years	70%	76	728.3	1173	29.8	509.2	1144		
coverage by June	80%	54.5	648.7	1161	19.7	417.2	1119		
14, 2021	90%	36.5	553.9	1142	12.9	315.2	1086		

Figure SI7 : Hospitalizations if 40-59 is vaccinated 70%-90%, 20-39 60%, 80% and 10-19, 60-79 and 80+ reached coverages 20%, 80%, 90% with total NPIs reopening in September with efficacy decreased by 10%. Cumulative cases are reported for reference.

Effect of reducing time between first and second dose

Table SI9: Percentage change of cumulative cases with respect to the base line NPIs no reopening in SI Figure SI3 with partial, total and pre-pandemic reopening in September and second dose given after 21 or 50 days. Age groups 10-19, 60-79 and 80+ are assumed to reach coverages 20%, 80%, 90% by mid June. Par.= partial; Tot.= total; Pre-pan.= pre-pandemic.

Projected percentage change of <u>cumulative cases</u> with respect to the base line NPIs no reopening in SI Figure SI3 with reopening in September													
21 days Between dose 1 and dose 2 20-39 years						50 days Between dose 1 and dose 2 20-39 years							
coverage by June 14, 2021						coverage by June 14, 2021							
	60% 80%					60% 80%							
NPI's Level of reopening		Par.	Tot.	Pre- pan.	Par.	Tot.	Pre- pan.	Par.	Tot.	Pre- pan.	Par.	Tot.	Pre- pan.
40-59 years 70 coverage 80 by June 90 14, 2021 90	70%	1.7	284	659	-10	58	573	19	438	706	-3.1	215	662
	80%	-4.6	184	632.5	-12	16.5	494	6.8	347	686	-7.1	135	635
	90%	-8.7	92.5	592.7	-13.1	-0.14	396	-1.15	250	664	-10.5	54.4	582

Table SI10: Percentage change of cumulative deaths with respect to the base line NPIs no reopening in SI Figure SI3 with partial, total and pre-pandemic reopening in September and second dose given after 21 or 50 days. Age groups 10-19, 60-79 and 80+ are assumed to reach coverages 20%, 80%, 90% by mid June. Par.= partial; Tot.= total; Pre-pan.= pre-pandemic.

Projected percentage change of <u>cumulative deaths</u> with respect to the base line NPIs no reopening in SI Figure SI3 with reopening in September													
21 days Between dose 1 and dose 2								50 days Between dose 1 and dose 2					
		20-39 cover	years age by J	une 14,	2021		20-39 years coverage by June 14, 2021						
NPI's Level of Par.			Tot.	Pre- pan.	Par.	Tot.	Pre- pan.	Par.	Tot.	Pre- pan.	Par •	Tot.	Pre- pan.
40-59 vears	70%	6.98	207.8	818	- 0.61	43.2	622.8	20.5	395	958.7	4.82	163	879.5
coverage by June 14, 2021	80%	2.78	126.5	763.6	- 1.74	17.1	463.1	11.7	284	926.4	1.94	100	810.5
	90%	0.13	63.5	668	- 2.31	6.67	317.1	6	190	880.1	- 0.37	43.6	673

Figure SI8: Hospitalizations with partial reopening in September if 40-59 is vaccinated 70%-00%, 20-39 60%, 80% and 10-19, 60-79 and 80+ reached coverages 20%, 80%, 90% and if the second dose is given at a rate of (A) 1/21 days⁻¹ or (B) 1/50 days⁻¹. Cumulative cases are reported for reference.

Time

B

Sensitivity Analysis

Using the Latin Hypercube Sampling/Partial Rank Correlation Coefficient (*LHS/PRCC*) we conducted sensitivity analysis on the parameters related to vaccination as well as infection-related parameters.

SENSITIVITY ANALYSIS								
PARAMETERS	DEFINITION	PRCC						
		CASES	DEATHS	HOSPITALIZATION (50 days after reopening in June)				
σ	Rate at which second dose is distributed	-0.9409	-0.9409	-0.9638				
λ_2	Daily doses age group 10- 19	0.01411	0.01411	0.02773				
λ_3	Daily doses age group 20- 39	-0.8897	-0.8897	-0.923				
λ_4	Daily doses age group 40- 59	-0.8206	-0.8206	-0.9088				
λ_5	Daily doses age group 60- 79	-0.1792	-0.1792	-0.4888				
λ_6	Daily doses age group 80+	-0.03836	-0.03836	-0.1357				
SENSITIVITY AN	NALYSIS							
PARAMETERS	DEFINITION	PRCC						
		CASES	DEATHS	HOSPITALIZATION (50 days after reopening in September)				
σ	Rate at which second dose is distributed	-0.9409	-0.9409	-0.9638				
λ_2	Daily doses age group 10- 19	0.01411	0.01411	0.02773				
λ_3	Daily doses age group 20- 39	-0.8897	-0.8897	-0.923				
λ_4	Daily doses age group 40- 59	-0.8206	-0.8206	-0.9088				
λ_5	Daily doses age group 60- 79	-0.1792	-0.1792	-0.4888				
λ_6	Daily doses age group 80+	-0.03836	-0.03836	-0.1357				

Table SI11: PRCC on cumulative cases and deaths, investigating vaccine-related parameters.

Table SI11 shows the PRCCs of the sampled parameters λ_i , $i \in \{2,3,4,5,6\}$, and σ , the daily doses in age group i, and the rate of receiving the second dose, respectively, on the cumulative cases and deaths. We observe that the age groups 3 and 4, namely, 20-39 and 40-59 years present the highest PRCC among the daily doses, suggesting that an increased vaccine

coverage of these age groups leads to the largest reduction in cases and deaths. Moreover, σ is negatively correlated to cases and deaths, suggesting that if this rate is small, hence the time between doses is longer, cases and deaths will increase. Similar results are visible for the hospitalizations reported 50 days after reopening in June.

Table SI12 shows the PRCC of some of the infection-related parameters on the model outcomes. Increase of contact, susceptibility of adults aged between 20 and 59 years show a significant positive correlation on deaths and cases, suggesting that reopening stages and higher susceptibility of adults will generate an increase of the infection,

SENSITIVITY ANALYSIS							
PARAMETERS	DEFINITION	PRCC					
		CASES	DEATHS				
C _{inc}	Percentage increase of contacts	0.6878	0.6878				
ϕ_1	Susceptibility age group 0-9	0.4791	0.4791				
ϕ_2	Susceptibility age group 10-19	0.4946	0.4946				
ϕ_3	Susceptibility age group 20-39	0.9539	0.9539				
ϕ_4	Susceptibility age group 40-59	0.9158	0.9158				
ϕ_5	Susceptibility age group 60-79	0.3994	0.3994				
ϕ_6	Susceptibility age group 80+	0.106	0.106				

 Table SI12: PRCC on cumulative cases and deaths, investigating infection-related parameters.

Cases data until December 2021

Figure SI9: Daily cases reported in Toronto from December 2020 to December 2021¹⁵ (green). The dashed lined represents the end of the period of time used to calibrate the model. The curves represent the model outcomes, with highest coverage among adults, under the following scenarios: total reopening in August with second dose given 21 days after first dose; total reopening in September with second dose given 112 days after first dose; partial reopening in September with second dose given 21 days after first dose; partial reopening in September with second dose given 112 days after first dose; partial reopening in September with second dose given 112 days after first dose; partial reopening in September with second dose given 112 days after first dose.

Data following the period of time used for the model calibration show similar trend to our model prediction, with a decrease trend until August 15, followed by a slight increase. towards the end of 2021, we observe a sharp increase, attributable to the emergence of Omicron.

References

[1] Toronto Public Health, COVID-19: Vaccine Data, <u>https://www.toronto.ca/home/covid-19/covid-19-latest-city-of-toronto-news/covid-19-pandemic-data/covid-19-vaccine-data/</u>

[2] Goldstein E, Lipsitch M, Cevik M. On the effect of age on the transmission of SARS-CoV-2 in households, schools and the community. medRxiv [Preprint]. 2020 Jul 24:2020.07.19.20157362. doi: 10.1101/2020.07.19.20157362. Update in: J Infect Dis. 2021 Feb 13;223(3):362-369. PMID: 32743609; PMCID: PMC7386533.

[3] Drolet, M., Lemieux-Mellouki, P., Bureau, A., Mondor M., Hardy M., Gingras G., Brisson, M. CANADIAN MIXING MATRICES DURING THE PRE-PANDEMIC PERIOD AND THE 2020 SPRING LOCKDOWN: DATA FROM CONNECT , https://www.inspq.qc.ca/covid-19/donnees/connect

[4] CDC, About Variants, https://www.cdc.gov/coronavirus/2019-ncov/transmission/variant.html

[5] WHO https://www.who.int/csr/don/archive/disease/novel_coronavirus/en/

[6] Public Health Ontario, COVID-19 B.1.1.7 (501Y.V1) Variant of Concern – What We Know So Far, https://www.publichealthontario.ca/-/media/documents/ncov/covid-wwksf/2020/12/what-we-know-uk-variant.pdf?la=e

[7] NCCID, Updates on COVID-19 Variants of Concern (VOC), https://nccid.ca/covid-19-variants/

[8] Li Q, Guan X, Wu P, et al. Early transmission dynamics in Wuhan, China, of novel coronavirus-infected pneumonia. N Engl J Med 2020; 382: 1199–207.
[9] Li R, Pei S, Chen B, et al. Substantial undocumented infection facilitates the rapid dissemination of novel coronavirus (SARS-CoV2). Science 2020;

[10] Buitrago-Garcia D, Egli-Gany D, Counotte MJ, Hossmann S, Imeri H, Ipekci AM, et al. (2020) Occurrence and transmission potential of asymptomatic and presymptomatic SARS-CoV-2 infections: A living systematic review and meta-analysis. PLoS Med 17(9): e1003346. https://doi.org/10.1371/journal.pmed.1003346

[11] Cevik M, Tate M, Lloyd O, Maraolo AE, Schafers J, Ho A. SARS-CoV-2, SARS-CoV, and MERS-CoV viral load dynamics, duration of viral shedding, and infectiousness: a systematic review and meta-analysis. Lancet Microbe. 2021 Jan;2(1):e13-e22. doi: 10.1016/S2666-5247(20)30172-5. Epub 2020 Nov 19. PMID: 33521734; PMCID: PMC7837230.

[12] Public Health Ontario, COVID-19 Real-World Vaccine Effectiveness – What We Know So Far, <u>https://www.publichealthontario.ca/-/media/documents/ncov/covid-wwksf/2021/04/wwksf-vaccine-effectiveness.pdf?la=en</u>

[13] Ministry of Health Memorandum to: Medical Officers of Health Hospital CEOs https://www.wrh.on.ca/uploads/Coronavirus/MOH_Vaccine_Memo_March_8_2021.pdf

[14] MATLAB fmincon https://www.mathworks.com/help/optim/ug/fmincon.html

[15] City of Toronto, COVID-19: Pandemic Data, https://www.toronto.ca/home/covid-19/covid-19-pandemic-data/