A brief note on fuzzy sets

Given a non-empty set $\Omega \subseteq \mathbb{R}^n$, a fuzzy set A in Ω is a set of ordered pairs [1]

$$A = \{ (\mathbf{x}; \mu_A(\mathbf{x})), \quad \mathbf{x} \in \mathbf{\Omega} \}$$

where $\mu_A(\mathbf{x}) \in [0, 1]$ is the membership degree of $\mathbf{x} \in \mathbf{\Omega}$ in A. We use the notation $A \leftrightarrow \mu_A$ to highlight the association between a fuzzy set and the corresponding membership function. If $\mu_A(\mathbf{x}) = 1$, \mathbf{x} is a full member of A in the classical sense, and may be referred to as prototype of this set. So, prototypes are useful to identify or label fuzzy sets.

We say that the $c \geq 2$ fuzzy sets $A_1 \leftrightarrow \mu_{A_1}$, $A_2 \leftrightarrow \mu_{A_2}$, ..., $A_c \leftrightarrow \mu_{A_c}$ in Ω form a fuzzy *c*-partition of Ω if, for $i = 1, 2, ..., A_i$ has at least one prototype and

$$\forall \mathbf{x} \in \mathbf{\Omega}, \ \sum_{i=1}^{c} \mu_{A_i}\left(\mathbf{x}\right) = 1,$$

(see [2]). Therefore, each element $\mathbf{x} \in \mathbf{\Omega}$ is represented in a fuzzy *c*-partition by the unit sum vector

$$\boldsymbol{\mu}\left(\mathbf{x}\right) = \left(\mu_{A_{1}}\left(\mathbf{x}\right), \mu_{A_{2}}\left(\mathbf{x}\right), ..., \mu_{A_{c}}\left(\mathbf{x}\right)\right), \tag{1}$$

where its i^{th} coordinate accounts for the degree of belongingness of **x** in A_i .

In general, a fuzzy analysis aims to estimate a fuzzy *c*-partition that hypothetically underlies the universe Ω from where the observed data **X** are sampled. Since **X** is a countable subset of Ω , we can alternatively write (1) for the k^{th} observation as follows:

$$\boldsymbol{\mu}_{k} = (\mu_{1k}, \mu_{2k}, ..., \mu_{ck}), \quad k = 1, 2, .., N,$$
(2)

where N is the sample size. A fuzzy analysis therefore entails the estimation of the prototypes of every fuzzy *c*-partition set and, for each observation, the respective membership degrees vector as in (2). Usually, the prototypes are arranged in a matrix in columns, e.g., $\mathbf{V} = [v_{ji}] \in \mathbb{R}^{n \times c}$, and the membership degrees are grouped in the so-called partition matrix, $\mathbf{U} = [\mu_{ik}] \in [0, 1]^{c \times N}$. In this perspective, the outcome of a fuzzy approach to data analysis are the estimates of \mathbf{U} and \mathbf{V} , given \mathbf{X} .

References

- Bellman, R.E., Zadeh, L.A (1970). Decision-making in Fuzzy Environment, Management Science, 17(4), B141–B164.
- [2] Nguyen, H.T., Prasad, N.R., Walker, C.L., Wlaker, E.A. (2003). A First Course in Fuzzy and Neural Control. Chapman & Hall/CRC.