		Disease	No Disease	
Test	positive	Right positive $\mathbf{a}=\mathbf{7 2}$	False positive $\mathbf{b}=\mathbf{9}$	$\mathbf{8 1}$
	negative	False negative $\mathbf{c = 4 8}$	Right negative $\mathbf{d}=\mathbf{1 7 1}$	$\mathbf{2 1 9}$
	Total	$\mathbf{1 2 0}$	$\mathbf{1 8 0}$	$\mathbf{3 0 0}$

Pretest probability of having the disease (p): is the prevalence of disease in the investigated population Pretest probability of not having the disease (1-p): is the prevalence of healthy subjects in the investigated population Sensitivity (sens): is the proportion of people with disease who have a positive test Specificity (spec): is the proportion of people free of a disease who have a negative test Positive predictive value (PPV): probability that a patient with a positive test has got really the disease Negative predictive value (NPV): probability that a patient with a negative test is really healthy

p	$=a+c / a+b+c+d=40 \%$
$1-p$	$=b+d / a+b+c+d=60 \%$
sens	$=a / a+c=60 \%$
spec	$=d / b+d=95 \%$
PPV	$=a / a+b=89 \%$
$N P V$	$=d / c+d=78 \%$

This example illustrates, that a test is useful when the pretest probability is increased up to a reasonable PPV (rule in the disease) or when NPV is increased reasonably (rule out). The figures illustrate that specificity is more important to rule in (spin = specificity rule in); and that sensitivity is more important to rule out (snout = sensitivity rule out). The relation between p, sens, spez, PPV and NPV is described by the Bayes' Theorem. Indeed a test is only useful, if the pretest probability (p) is out of the range of $95 \% \mathrm{CI}$ of PPV (in this example $95 \% \mathrm{Cl}=80 \%-94 \%)$; and/or if the pretest probability of not having the disease (1-p) is out of the range of the $95 \% \mathrm{Cl}$ of NPV (in this example $95 \% \mathrm{CI}=72 \%-83 \%$). The $95 \% \mathrm{Cl}$ is calculated using Wilson's method. ${ }^{28}$
In this example p is increased up to a meaningful PPV. NPV seems not to be increased reasonably if compared with 1-p.

