Combined effects of leaks, respiratory system properties and upper airway patency on the performance of home ventilators: A bench study

Kaixian Zhu, Claudio Rabec, Jésus Gonzalez-Bermejo, Sébastien Hardy, Sami Aouf, Pierre Escourrou
 and Gabriel Roisman

5

6 Additional File 2: Study of equivalent ventilatory settings

7 The three included ventilators were firstly evaluated for their ventilatory settings, such as inspiratory
8 trigger sensitivity, pressure rise time and I:E cycling, in order to establish equivalent settings for the
9 study.

10 The ventilator was connected to ASL5000 through a 1.8-meter long and 22-mm diameter tubing. A 11 calibrated intentional leak port (24 L/min at 10 cmH₂O) was coupled at the outlet of ASL5000. The 12 ASL5000 was configured to simulate an obstructive respiratory system (COPD condition) with the 13 resistance and compliance set at 20 cmH₂O·s·L⁻¹ and 50 ml·cmH₂O⁻¹ respectively.

14

15 i. Inspiratory trigger sensitivity

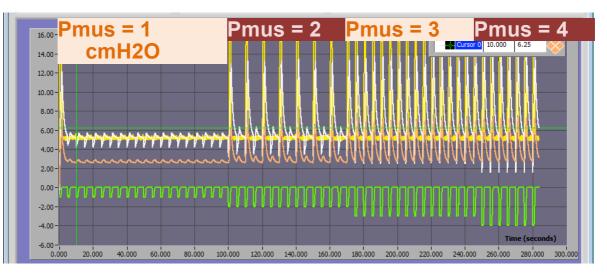
16 The ASL5000 generated breathing efforts with inspiratory muscular pressure (Pmus) varying from 1

17 cmH₂O to 10 cmH₂O in a stepwise manner with increment of 1 cmH₂O. Each effort was repeated 15

18 times (20 times for $Pmus=1 \text{ cmH}_2O$). The ventilators were set to spontaneous pressure mode which

19 delivered spontaneous-triggered ventilatory supports. The other ventilatory settings are shown in Table

20 S2-1.


21 Table S2-1: Ventilatory settings of the ventilators for the study of inspiratory trigger sensitivity

	Mode	Rising time	I :E cycling	Ti min-max (s)
A150	S	200 ms	Medium	0,8-1,5
T100	S	2	40%	1,5
V60	Support	2	4	0.8-1.5

Bpm: breath per minute. A150: AstralTM 150; T100: TrilogyTM 100; V60: VivoTM 60. Since the breathing rate of
 V60 cannot be disabled, a minimum breathing rate that equal to 4 bpm was applied.

24 25

For each inspiratory trigger sensitivity setting, the minimal Pmus which could trigger the ventilator without autotriggered cycles was noted. An example is given in Figure S2-1.

28 29 Figure S2-1: Example of inspiratory trigger sensitivity setting test. Yellow curve: airway pressure; Green
 curve: Pmus. The minimal Pmus which can trigger the device without autotriggered cycles was noted. In this
 example, the inspiratory trigger of A150 was set at medium and the minimal Pmus was 3 cmH₂O.

4

5 Thus, the equivalent inspiratory trigger sensitivity settings among the three ventilators could be 6 obtained and the results are shown in Table S2-2.

7 Table S2-2: Comparison of inspiratory trigger settings between ventilators.

	Free and the second sec		8			
Pmus (cmH ₂ O)	Corresponding	Inspiratory trigger sensitivity settings with which the ventilator				
	inspiratory peak	responds without	responds without autotriggered cycles			
	flow	A150	A150 T100 V60 (a.u.)			
	(L/min)		(L/min*)			
1	2.5		1, 2	1**	Most	
					sensitive	
2	5	Very high and	3, 4, 5	2, 3, 4, 5		
		High				
3	7.5	Medium	6, 7	6, 7, 8, 9		
4	10	Low	8,9			
5	12.5					
6	15	Very low			Most	
		-			insensitive	

8 * according to the user manual of T100; **Autotriggered cycles were already present. Pmus: inspiratory
 9 muscular pressure. A150: AstralTM 150; T100: TrilogyTM 100; V60: VivoTM 60. Note that the inspiratory
 10 trigger sensitivity settings of V60 are presented as arbitrary unit (a.u.).

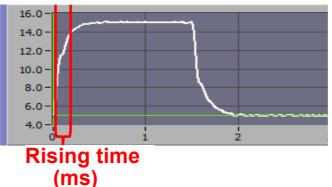
11

According to our protocol which is mentioned in the main text, each test was started with the
intermediate inspiratory trigger sensitivity for each ventilator, i.e., "Medium" for A150, "5" for T100
and V60.

15 ii. Pressure rise time

16 The ASL5000 was configured in passive lung mode which did not present any breathing effort. The 17 ventilators were set to pressure-control ventilation mode delivering mandatory ventilatory cycles at a

18 rate of 12 breath per minute (bpm). The other ventilatory settings are shown in Table S2-3.


19 Table S2-3: Ventilatory settings of the ventilators for the study of rising time

i able 52 5. Venenatory settings of the venenators for the study of fising time						
		Mode	EPAP-IPAP	Inspiratory	Ti (s)	Breathing rate
			(cmH_2O)	trigger		(bpm)
	A150	PAC	5-15	OFF	1.5	12
	T100	Т	5-15	n/a	1.5	12
	V60	Assist/Control	5-15	OFF	1.5	12

EPAP: expiratory positive airway pressure; IPAP: inspiratory positive airway pressure. Ti: inspiratory time.
 A150: AstralTM 150; T100: TrilogyTM 100; V60: VivoTM 60.

22

23	The time required for airway pressure to rise from 10% to 90% of the demanded pressure support (6 to
24	14 cmH ₂ O) were measured and averaged over 5 cycles. An example is shown in Figure S2-2.

- Figure S2-2: Example of rising time setting test. The time required for the airway pressure to rise from 10% to
- $3 \qquad 90\%$ (6 to 14 cmH₂O in this example) was measured.
- 4
- Results are shown in Table S2-4. The rising time settings chosen for the three home ventilators in the
 current study are marked in bold characters in Table S2-4.

A150		T100		V60	
Settings (ms)	Measured time Settings		Measured time	Settings	Measured time
	(ms)		(ms)		(ms)
Min	136	1	197	1	142
150	175	2	410	2	229
200	215	3	584	3	306
300	297	4	800	4	370
400	382	5	995	5	455
500	479	6	1192	6	516
600	568			7	581
				8	647
				9	716

7 Table S2-4. Comparison of pressure rising time settings between ventilators.

Results were presented as mean values averaged over 5 ventilatory cycles. A150: AstralTM 150; T100: TrilogyTM
 100; V60: VivoTM 60.

10

11

12 iii. Cycling from I to E (in %)

13 The ASL5000 generated breathing efforts with Pmus equal to 4 cmH₂O to trigger the ventilatory 14 cycles. The ventilators were set to spontaneous pressure mode. The other ventilatory settings are 15 shown in Table S2-5.

16 Table S2-5: Ventilatory settings of the ventilators for the study of I:E cycling

Table 52-5. Ventilatory settings of the Ventilators for the study of 1.1 eyening						
	Mode	EPAP-	Inspiratory	Rising time	Ti min-	Breathing
		IPAP	trigger		max (s)	rate. (bpm)
A150	S	5-15	Medium	Min	0.1-3	OFF
T100	S	5-15	6	1	3	n/a
V60	Support	5-15	6	1	0.3-3	4

EPAP: expiratory positive airway pressure; IPAP: inspiratory positive airway pressure. Ti: inspiratory time.
 A150: AstralTM 150; T100: TrilogyTM 100; V60: VivoTM 60.

19

20 The ratio of flow amplitude between the value at the end of inspiratory support (switching from IPAP

to EPAP) and the maximal value were calculated and averaged over 5 cycles. An example is given in

22 Figure S2-3.

1 2 3 4

Figure S2-3: Example of I:E cycling setting test. The ratio of flow amplitude between the value at the end of inspiratory support and the maximal value were calculated. In this example, the I:E cycling of V60 was set at 9, and the obtained ratio was equal to 4%.

5

Results are shown in Table S2-6. The I:E cycling settings chosen for the three home ventilators in thecurrent study are marked in bold characters in Table S2-6.

8 Table S2-6. Comparison of I:E cycling settings between ventilators

A150		T100	T100		V60	
Settings	Ratio between end insp. support and maxi flow (%)	Settings	Ratio between end insp. support and maxi flow (%)	Settings	Ratio between end insp. support and maxi flow (%)	
Very low	7	10	11	1	85	
Low	12	20	20	2	74	
Medium	26	30	28	3	63	
High	35	40	38	4	51	
Very high	50	50	46	5	41	
		60	60	6	32	
		70	68	7	23	
		80	77	8	13	
		90	87	9	4	

9 Results were presented as mean values averaged over 5 ventilatory cycles. A150: AstralTM 150; T100: TrilogyTM
 100; V60: VivoTM 60.