Additional file 1: Details of the model

The model for observation Y_{ijk} (*j*th measure of subject *k* in group *i*) was

 $Y_{ijk} = \mu + \alpha_i + \beta_j + (\alpha\beta)_{ij} + U_{ik}$ + covariates + ϵ_{ijk} , $i = 1, 2; j = 1, ..., 5(3); k = 1, ..., n_i$, with α_i as the *i*th group effect (time averaged group difference), β_j as the *j*th time effect (group averaged time differences), $(\alpha\beta)_{ij}$ as the *ij*th group-time interaction (difference between the within-group changes, equivalent to the treatment effect), U_{ik} as the random intercept of subject *k* in group *i* and ϵ_{ijk} as measurement error. For our LLM, we assumed that the U_{ik} and the ϵ_{ijk} are each independent and normally distributed with between-subject variance v^2 and within-subject variance τ^2 , respectively, leading to a uniform within-subject correlation between two different measurements on the same subject.