
The first Danish family reported with an AQP5 mutation presenting diffuse non-epidermolytic palmoplantar keratoderma of Bothnian type, hyperhidrosis and frequent Corynebacterium infections: a case report

Additional file 1

Figure S1. Genetic test results of the proband. Bidirectional Sanger sequencing of the AQP5 gene.

Sequence trace showing C to T substitution; the upper trace shows the normal sequence and the lower trace is from the patient:

Translation of AQP5 gene with the mutated residue circled in red:

١.

1	CCAGGCCGCCAGCCTCGGAGTGGGCGCGGGACAGTGCGCGCGC
61	CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
121	CAGCTGCCGCGCGCCCCGCGCCACCATGAAGAAGGAGGTGTGCTCCGTGGCCTTCCT MKKEVCSVAFL
181 11	C <mark>AAG</mark> GCC <mark>GTG</mark> TTC <mark>GCA</mark> GAG <mark>TTC</mark> TTG <mark>GCC</mark> ACC <mark>CTC</mark> ATC <mark>TTC</mark> GTC <mark>TTC</mark> TTT <mark>GGC</mark> CTG <mark>GGC</mark> TC KAVFAEFLATLIFVFFGLGS
241 31	G <mark>GCC</mark> CTC <mark>AAG</mark> TGG <mark>CCG</mark> TCG <mark>GCG</mark> CTG <mark>CCT</mark> ACC <mark>ATC</mark> CTG <mark>CAG</mark> ATC <mark>GCG</mark> CTG <mark>GCG</mark> TTT <mark>GGC</mark> CT ALKWPSALPTILQIALAFGL

	G <mark>GCG</mark> GCC <mark>CAG</mark> CTG <mark>GTG</mark> GGC <mark>GCC</mark> ATT <mark>GCC</mark> GGG <mark>GCT</mark> GGC <mark>ATC</mark> CTC <mark>TAC</mark> GGT <mark>GTG</mark> GCA <mark>CCG</mark> CT AAQLVGAIAGAGILYGVAPL
	CAATGCCCGGGGCAATCTGGCCGTCAACGCGCTCAACAACAACAACGCAGGGCCAGGC NARGNLAVNALNNTTQGQA
	C <mark>ATGGTGGTGGAGCTG</mark> ATT <mark>CTGACCTTC</mark> CAG <mark>CTGGCACTCTGCATC</mark> TTCGCCTCCACTGA MVV-EL-IL-T-FQLALCI-FASTD
	CTCCCGCCGCACCAGCCCTGTGGGCTCCCCAGCCCTGTCCATTGGCCTGTCTGT
	GGGCCACCTTGTCGGAATCTACTTCACTGGCTGCTCCATGAACCCAGCCGGCTCTTTTGG GHLVGIYFTGCSMNPARSFG
_	CCCTGCGGTGGTCATGAATCGGTTCAGCCCCGCTCACTGGGTTTTCTGGGTAGGGCCCAT PAVVMNRFSPAHWVFWVGPI
	CGTGGGGGGGGGGCGGTCCTGGCCATCCTTTACTTCTACCTGCTCTTCCCCAACTCCCTGAG VGAVLAAILYFYLLFPNSLS
•	CCTGAGTGAGCGTGTGGCCATCATCAAAGGCACGTATGAGCCTGACGAGGACTGGGAGGA LSERVAIIKGTYEPDEDWEE
251	G <mark>CAGCGGGAAGAGCGGAAGAAGACCATGGAGCTGACCACCCGCTGACCAGTGTCAGGCAG</mark> QREERKKTMELTTR*
	CCCCCACCCCTCACCCCCACCCAACGGGGAAAAGAAGAAAAASTACCTAACACAAGC
	TTCCTTTTTGCACAACCGGTCCTCTTGGCTGAGGAGGAGGAGCTGGTCACCCTGGCTGCA
	CAGTTAGAGAGGGGGGGGGGGGGGGGGGGGGGGGGGGGG
1141	GETCTGCTGGGGACAGGTCTCTCGGGACAGACCTCAGAGATTGTGAATGCAGTGCCAAG
1201	CTCACAGGCTGCAAGGGCCAGGCCAGAAAAGGGCGGGCCTGCAGCCTGCACCCCCACCT

301 GGCCATAGGCACGCTGGCCCAGGCCCTGGGACCCGTGAGCGGCCACATCAACCCCGC 51 --A--I--G--T--L--A--Q--A--L--G--P--V--S--G--G--H--I-N--P--A

361 CATCACCCTGGCCCTCTTGGTGGGCAACCAGATCTCGCTGCTCCGGGCTTTCTTCTACGT 71 --I--L--A--L--V--G--N--Q--I--S--L--R--A--F--F--Y--V

,

1261	TCCCCA	ACCETTCCTCAAGAGCTG	AAGGGATCCCAGCCCC	TAGGTGGGCAGAGGC	AGACC
	••••		******		• • • • •
1321	CTCCCC	AGAGCTCCTTAGGAAGAA	GACAGACTGGTTCATT	SAATGCCGCCTTATT!	ATTT
1381	CTGGTG	AGGATOCATSCOTGGGGC	TGCTGCTGTTTAGAGT	SGGGGCTACCCAATA	ATCA
1441	CTGATA	TCA			
Key					5
Codons		Alternating codons	Alternating codons		
Exons		Alternating exons	Alternating exons		
Other features		UTR	1		

Variation summary

Variation	Genotype	Exon	Predicted change
c.562C>T	Heterozygous	3	p.Arg188Cys

Comments

The patient was heterozygous for the single nucleotide mutation c.562C>T in exon 3 of the AQP5 gene, predicted to cause a missense change, p.Arg188Cys, at the protein level (Blaydon *et al.* (2013) AJHG 93(2):330-5.).