ADDITIONAL FIILE

In vitro antiplasmodial activity and toxicological profile of extracts, fractions and chemical constituents of leaves and stem bark of *Dacryodes edulis* (Burseraceae)

By

Kevine Johane Jumeta Dongmo¹, Mariscal Brice Tchatat Tali², Yannick Stéphane Fotsing Fongang^{3,*}, Pierre Leonel K. Tafokeu Taguimjeu¹, Donald Ulrich Kenou Kagho¹, Gabin Thierry Bitchagno⁴, Bruno Ndjakou Lenta^{5,*}, Fabrice Boyom Fekam², Norbert Sewald⁶, Silvère Augustin Ngouela¹

¹ Department of Organic Chemistry, Faculty of Science, University of Yaoundé I, P.O. Box 812 Yaoundé, Yaoundé, Cameroon (jumetakevine@yahoo.fr; taguimjeuleonel@outlook.fr; dkaghokenou@yahoo.fr)

² Antimicrobial and Biocontrol Agents Unit, Faculty of Science, University of Yaoundé I, P.O. Box 812 Yaoundé, Yaoundé, Cameroon (<u>b.tchatat@yahoo.com</u>; <u>tchatatb7@gmail.com</u>)

³ Department of Chemistry, Higher Teachers' Training College, The University of Maroua, P.O. Box 55 Maroua, Maroua, Cameroon (<u>fongangfys@yahoo.fr</u>)

⁴ Department of Chemistry, University of Dschang, P.O. Box 67 Dschang, Cameroon (bmgt198716@ymail.com)

⁵ Department of Chemistry, Higher Teacher Training College, University of Yaoundé I, P.O. Box 47 Yaoundé, Yaoundé, Cameroon (<u>lentabruno@yahoo.fr</u>)

⁶ Department of Chemistry, Bielefeld University, P.O. Box 100131, 33501, Bielefeld, Germany (<u>Norbert.sewald@uni-bielefeld.de</u>)

* **Corresponding Authors** : Yannick Stéphane Fotsing Fongang (<u>fongangfys@yahoo.fr</u>; Orcid number: 0000-0002-9311-9945) and Bruno Ndjakou Lenta (<u>lentabruno@yahoo.fr</u>)

Table of Contents

Figure S1: HR-ESI mass spectrum of 1
Figure S2: ¹ H NMR spectrum (Pyridin- <i>d</i> ₅ , 600 MHz) of 1
Figure S3 : ¹³ C NMR spectrum (Pyridin- <i>d</i> ₅ , 150 MHz) of 1 4
Figure S4: ESI mass spectrum of 2
Figure S5: ¹ H NMR spectrum (CDCl ₃ , 600 MHz) of 2
Figure S6: ¹³ C NMR spectrum (CDCl ₃ , 150 MHz) of 25
Figure S7: ¹ H NMR spectrum (Pyridin- <i>d</i> ₅ , 600 MHz) of 3
Figure S8: ¹ H NMR spectrum (Pyridin- <i>d</i> ₅ , 600 MHz) of 46
Figure S9 : ¹³ C NMR spectrum (Pyridin- <i>d</i> ₅ , 150 MHz) of 4 7
Figure S10: HR-ESI mass spectrum of 57
Figure S11: ¹ H NMR spectrum (CD ₃ OD, 600 MHz) of 5
Figure S12: ¹³ C NMR spectrum (CD ₃ OD, 150 MHz) of 5
Figure S13: ¹ H NMR spectrum (CD ₃ OD, 600 MHz) of 69
Figure S14: ¹³ C NMR spectrum (CD ₃ OD, 150 MHz) of 69
Figure S15: HR-ESI mass spectrum of 710
Figure S16: ¹ H NMR spectrum (CDCl ₃ , 600 MHz) of 710
Figure S17: ¹³ C NMR spectrum (CDCl ₃ , 150 MHz) of 7
Figure S18: ¹ H NMR spectrum (CDCl ₃ , 600 MHz) of 811
Figure S19: ¹³ C NMR spectrum (CDCl ₃ , 150 MHz) of 812
Figure S20: HR-ESI mass spectrum of 912
Figure S21: ¹ H NMR spectrum (CDCl ₃ , 600 MHz) of 913
Figure S22: ¹³ C NMR spectrum (CDCl ₃ , 150 MHz) of 9
Figure S23: ¹ H NMR spectrum (CD ₃ OD, 600 MHz) of 1014
Figure S24: ¹ H NMR spectrum (CDCl ₃ , 600 MHz) of 1114
Figure S25: ¹³ C NMR spectrum (CDCl ₃ , 150 MHz) of 1115
Figure S26: ¹ H NMR spectrum (CDCl ₃ , 600 MHz) of 1215
Figure S27: ¹³ C NMR spectrum (CDCl ₃ , 150 MHz) of 1216
Figure S28: ¹ H NMR spectrum (CDCl ₃ , 600 MHz) of 1316
Figure S29: ¹³ C NMR spectrum (CDCl ₃ , 150 MHz) of 1317
Figure S30: ¹ H NMR spectrum (CDCl ₃ , 600 MHz) of 1417
Figure S31: ¹³ C NMR spectrum (CDCl ₃ , 150 MHz) of 14

Lichexanthone (1)

Figure S2: ¹H NMR spectrum (Pyridin-d₅, 600 MHz) of 1

Figure S3: ¹³C NMR spectrum (Pyridin-d₅, 150 MHz) of 1

Griseoxanthone (2)

Figure S4: ESI mass spectrum of 2

Figure S6: ¹³C NMR spectrum (CDCl₃, 150 MHz) of 2

3-3'-*O*-dimethylellargic acid (3)

Figure S7: ¹H NMR spectrum (Pyridin-d₅, 600 MHz) of **3**

3,3',4-tri-O-methylellargic (4)

Figure S8: ¹H NMR spectrum (Pyridin-d₅, 600 MHz) of 4

3,3"-di-*O*-methylellargic acid 4-*O*-(3"-galloyl)-β-*D*-xylopyranoside (5)

Figure S10: HR-ESI mass spectrum of 5

Figure S11: ¹H NMR spectrum (CD₃OD, 600 MHz) of 5

Figure S12: ¹³C NMR spectrum (CD₃OD, 150 MHz) of 5

3,4-dihydroxybenzoïc acid (6)

Figure S14: ¹³C NMR spectrum (CD₃OD, 150 MHz) of 6

Figure S15: HR-ESI mass spectrum of 7

Figure S16: ¹H NMR spectrum (CDCl₃, 600 MHz) of 7

Figure S17: ¹³C NMR spectrum (CDCl₃, 150 MHz) of 7

Figure S18: ¹H NMR spectrum (CDCl₃, 600 MHz) of 8

Figure S19: ¹³C NMR spectrum (CDCl₃, 150 MHz) of 8

Auranthiamide acetate (9)

Figure S20: HR-ESI mass spectrum of 9

Figure S21: ¹H NMR spectrum (CDCl₃, 600 MHz) of 9

Figure S22: ¹³C NMR spectrum (CDCl₃, 150 MHz) of 9

Ethyl gallate (10)

Figure S23: ¹H NMR spectrum (CD₃OD, 600 MHz) of 10

β - amyrinacetate (11)

Figure S24: ¹H NMR spectrum (CDCl₃, 600 MHz) of 11

Figure S26: ¹H NMR spectrum (CDCl₃, 600 MHz) of 12

Figure S27: ¹³C NMR spectrum (CDCl₃, 150 MHz) of 12

Figure S28: ¹H NMR spectrum (CDCl₃, 600 MHz) of 13

Figure S29: ¹³C NMR spectrum (CDCl₃, 150 MHz) of 13

Mixture of β -and α - amyrin (14)

Figure S30: ¹H NMR spectrum (CDCl₃, 600 MHz) of 14

Figure S31: ¹³C NMR spectrum (CDCl₃, 150 MHz) of 14