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Recursive Least Squares Prediction with minimum distance multiple 

look error feedback 
 
 

 Reference 7 describes the estimation problem, but the extension to the pure 
prediction problem is straightforward.  Although our work involves multiple independent 
data streams (multiple reference channels), we limit this appendix to one independent 
data stream (reference channel), e.g. a single OTC product group,  without loss of 
generality.  Let [ ]ŷ n k+  denote the predicted time series (the dependent variable) when 
data at time steps n≤  are available, i.e. we are making a prediction 0k >  steps ahead 
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the error at each step is defined by ˆl l le y y= − , and λ  is the “forgetting factor”, 
introduced to enforce adaptation of the filter to the most recent changes in the data.  The 
role of the forgetting factor can be understood by considering the quantity nλ  where 
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 .  Now the expression on the right hand side is easily found to be  
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 which represents a measure of the effective memory of the filter.  Smaller 

values for λ  correspond to shorter memory lengths nλ  which will enable better tracking 

of nonstationarities.  Defining the matrix element [ ] [ ] [ ]
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= −∑ , the Normal equations [7] at any step (day 

number n ) are [ ] ( ) [ ]nR n h r n= , where the dependence of the filter on n  is explicitly 
shown by the superscript on the filter vector, which itself is a vector of length M  
denoting the span of the filter over M  days.  The quantities [ ]R n  and [ ]r n  satisfy rank-
one update equations which describe the way these quantities change from one day to the 
next:  [ ] [ ] [ ] [ ]1 TR n R n x n x nλ= − +  and [ ] [ ] [ ]1 nr n r n x n yλ= − + .  Standard rank-one 
update techniques from matrix algebra then lead to the following recursive least squares 
algorithm (if we denote apriori quantities by a subscript 0 , and apostiori quantities by a 
subscript 1): 
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Inverse covariance and Kalman gain: 
0

1
0 0 0P R K P x−= =  

Likelihood  variables:   ( ) 1
0 , 1TK xν µ ν −= = +  

Inverse covariance and Kalman gain: 1 0 1 0 1 0
TK K P P K Kµ= = −  

Prediction and error:   0 0 0 0ˆ ˆTy h x e y y= = −  
Filter update:    1 0 0 1h h e K= +  
 
 
 
The recursion begins with a zero filter (i.e. a vector of length M  and zero for every 
element) and a covariance matrix that is a large multiple of the unity matrix. 
 
 The multiple look feature introduced in this paper relates to the prediction error 
that is fed back into the filter update (the last step).  This error term is computed multiple 
times for any given day index using multiple filters depending on the number of steps for 
the prediction.  For instance, using today’s data, denoted by the index n , and the past 

1M −  days, denoted by indices ( )1 , , 1n M n− − −… , we make a prediction for a future 
day at index n P+ , using the present filters.  In addition, we use the same filters to make 
a prediction for day 1n P+ − , using the available data indices ( )1 1 , , 1n M n− − − −⎡ ⎤⎣ ⎦… , 
and similarly we continue to make a prediction for every day prior to that up to and 
including the index 1n +  (the corresponding data indices for the latter prediction are 

( ) ( ) ( )1 1 , , 1n M P n P− − − − − −⎡ ⎤⎣ ⎦… ).  In other words, every day in the future will have 
P  predictions (P looks) that were made when that point was P  days ahead of the index 
n , 1P −  days ahead, and so on, until it was only 1 day ahead.  So when the index n  (i.e. 
today) turns to 1n + , i.e. the data for tomorrow becomes available, we have P  possible 
error terms, only one of which can be fed back into the filter update equation.  We chose 
the error term with the smallest magnitude to perform the update. 


