Appendix to How old are you, really? Communicating chronic risk through effective age of your body and organs, by David Spiegelhalter

Let T be the age at which an adverse event E happens to an individual. Let $S(t ; x)$ the survivor function at age t for someone with risk factors x, i.e. $S(t ; x)=P(T>t ; x)$, the probability that the adverse event in question has not occurred by age t.

Suppose the 'risk level' r of a person aged t_{1} with risk factors x_{1} is defined as the probability of the event first occurring to them within the next k years. so that

$$
r=P\left(t_{1}<T<t_{1}+k \mid T>t_{1} ; x\right)=\frac{P\left(t_{1}<T<t_{1}+k ; x\right)}{P\left(T>t_{1} ; x\right)}=\frac{S\left(t_{1} ; x\right)-S\left(t_{1}+k ; x\right)}{S\left(t_{1} ; x\right)} .
$$

Suppose a 'healthy' person has risk factors x_{0}. Then the effective age t_{0} of the individual in question is the age at which a healthy person has risk r of experiencing the event in the next k years, and so, as before,

$$
r=P\left(t_{0}<T<t_{0}+k \mid T>t_{0} ; x_{0}\right)=\frac{P\left(t_{0}<T<t_{0}+k ; x_{0}\right)}{P\left(T>t_{0} ; x_{0}\right)}=\frac{S\left(t_{0} ; x_{0}\right)-S\left(t_{0}+k ; x_{0}\right)}{S\left(t_{0} ; x_{0}\right)},
$$

and so

$$
\frac{S\left(t_{1} ; x_{1}\right)-S\left(t_{1}+k ; x_{1}\right)}{S\left(t_{1} ; x_{1}\right)}=\frac{S\left(t_{0} ; x_{0}\right)-S\left(t_{0}+k ; x_{0}\right)}{S\left(t_{0} ; x_{0}\right)}
$$

or equivalently

$$
\begin{equation*}
\frac{S\left(t_{1}+k ; x_{1}\right)}{S\left(t_{1} ; x_{1}\right)}=\frac{S\left(t_{0}+k ; x_{0}\right)}{S\left(t_{0} ; x_{0}\right)} . \tag{1}
\end{equation*}
$$

Let $h(t ; x)$ be the hazard function at age t for an individual with risk factors x, where h is the instantaneous risk of E occurring given it has not occurred up to age t. Thus $h(t ; x)=p(t ; x) / S(t ; x)$, the cumulative hazard $H(t ; x)=\int h=-\log S(t ; x)$, and so $S(t ; x)=e^{-H(t ; x)}$.

Equation (1) can therefore be written in terms of the cumulative hazard as

$$
\begin{equation*}
H\left(t_{1}+k ; x_{1}\right)-H\left(t_{1} ; x_{1}\right)=H\left(t_{0}+k ; x_{0}\right)-H\left(t_{0} ; x_{0}\right) . \tag{2}
\end{equation*}
$$

We now introduce the first assumption of proportional hazards, which means that the hazard function can be expressed as $h(t ; x)=h_{0}(t) e^{b x}$, where h_{0} is a baseline hazard function, essentially that for $x=0$. Thus $H(t ; x)=H_{0}(t) e^{b x}$ for a cumulative baseline hazard H_{0}.

Equation (2) becomes

$$
\begin{equation*}
\left(H_{0}\left(t_{1}+k\right)-H_{0}\left(t_{1}\right)\right) e^{b x_{1}}=\left(H_{0}\left(t_{0}+k\right)-H_{0}\left(t_{0}\right)\right) e^{b x_{0}} . \tag{3}
\end{equation*}
$$

or equivalently

$$
\begin{equation*}
\log \left(H_{0}\left(t_{0}+k\right)-H_{0}\left(t_{0}\right)\right)=\log \left(H_{0}\left(t_{1}+k\right)-H_{0}\left(t_{1}\right)\right)+b\left(x_{1}-x_{0}\right) . \tag{4}
\end{equation*}
$$

We now bring in the second assumption that the hazard is exponentially increasing, which we can express as $h_{0}(t)=d e^{c t}$, the Gompertz equation. Then the proportional hazard assumption means that $h(t ; x)=d e^{b x} e^{c t}$, so the risk factors just have the effect of increasing the constant.

Given this assumption, we see that

$$
H_{0}\left(t_{1}+k\right)-H_{0}\left(t_{1}\right)=\int_{t_{1}}^{t_{1}+k} h_{0}(t) d t=d \int_{t_{1}}^{t_{1}+k} e^{c t} d t=\frac{d}{c} e^{c t_{1}}\left[e^{c k}-1\right] .
$$

Substituting this in Equation (4) and cancelling terms gives

$$
\begin{equation*}
c t_{1}=c t_{0}+b\left(x_{1}-x_{0}\right) \tag{5}
\end{equation*}
$$

or equivalently

$$
\begin{equation*}
t_{1}=t_{0}+\frac{b}{c}\left(x_{1}-x_{0}\right), \tag{6}
\end{equation*}
$$

we immediately see that

- the lost years $t_{1}-t_{0}$ does not depend on the current age,
- the effective age t_{1} does not depend on k, and so the risk horizon is irrelevant.

We note that for binary exposures $x_{1}-x_{0}=1$, and hence the 'years lost' is $\frac{b}{c}$: this is also the Rate Advancement Period. It can be estimated by fitting both the exposure and age as covariates in a Poisson regression, and then taking the ratio of their coefficients. Alternatively, in a Cox regression, exposure and age-at-entry can be fitted as covariates, and time-in-study used as the time variable.

