Additional file 1: Mathematical derivations

The equations for the two stillbirth rates are:

$$
\begin{align*}
& S T B R=\mathrm{SB} \times 1000 /(L B+S B) \tag{A1}\\
& S L B R=S B \times 1000 / L B \tag{A2}
\end{align*}
$$

Multiplying and dividing the right-hand side of (A1) by $L B$, we have

$$
\begin{align*}
& S T B R=S B \times 1000 \times L B /(L B+S B) \times L B, \text { or } \\
& S T B R=S L B R \times L B /(L B+S B) \tag{Aí}
\end{align*}
$$

Subtracting the RHS of (Aí), that equals $S T B R$, from $S L B R$, we get
$S L B R-S T B R=S L B R-[S L B R \times L B /(L B+S B)]$, or
$S L B R-S T B R=S L B R[1-L B /(L B+S B)]$, or
$S L B R-S T B R=S L B R[(L B+S B)-L B] /(L B+S B)]$, or
$S L B R-S T B R=S L B R \times S B /(L B+S B)=S L B R \times S T B R / 1000>0$
We now derive expressions for the changes in the two stillbirth rates. Let $S L B R_{1}, S T B R_{1}$, $S L B R_{2}$, and $S T B R_{2}$ represent the two stillbirth rates, and $L B_{1}, S B_{1}, L B_{2}$, and $S B_{2}$ the number of live and stillbirths for years 1 and 2 , respectively. Let

$$
\begin{equation*}
S B_{2}=k S B_{l,} \text { where } k>0 . \tag{A4}
\end{equation*}
$$

When $k>1$, the number of stillbirths in year 2 is greater than that in year 1 ; when it is <1, the number in year 2 is smaller.

Let $\triangle S L B R$ and $\triangle S T B R$ denote the change in the two rates from year 1 to year 2 . Then,

$$
\begin{align*}
& \Delta S L B R=\left(1000 \times k S B_{1} / L B_{2}\right)-\left(1000 \times S B_{1} / L B_{1}\right), \text { or } \\
& \Delta S L B R=\left(1000 \times S B_{l}\right)\left(k / L B_{2}-1 / L B_{1}\right), \text { or } \\
& \Delta S L B R=\left(1000 \times S B_{l}\right) \times\left(k L B_{1}-L B_{2}\right) /\left(L B_{2} \times L B_{1}\right) \tag{A5}
\end{align*}
$$

and

$$
\Delta S T B R=\left(1000 \times k S B_{1} /\left(L B_{2}+k S B_{1}\right)\right)-\left(1000 \times S B_{1} /\left(L B_{1}+S B_{1}\right)\right), \text { or }
$$

$$
\Delta S T B R=\left(1000 \times S B_{l}\right)\left(\left(k /\left(L B_{2}+k S B_{l}\right)-1\left(/ L B_{l}+S B_{l}\right)\right),\right. \text { or }
$$

$$
\Delta S T B R=\left(1000 \times S B_{l}\right)\left(\left(\left(k \times\left(L B_{l}+S B_{l}\right)-\left(L B_{2}+k S B_{l}\right)\right) /\left(L B_{2}+k S B_{l}\right)\left(L B_{l}+S B_{l}\right)\right),\right. \text { or }
$$

$$
\begin{equation*}
\Delta S T B R=\left(1000 \times S B_{1}\right)\left(\left(k L B_{1}-L B_{2}\right) /\left(L B_{2}+k S B_{1}\right)\left(L B_{1}+S B_{1}\right)\right) \tag{A6}
\end{equation*}
$$

Examining the right hand sides of (A5) and (A6), we get

$$
\begin{equation*}
\operatorname{sign} \triangle S L B R=\operatorname{sign} \triangle S T B R=\operatorname{sign}\left(k L B_{1}-L B_{2}\right) \tag{A7}
\end{equation*}
$$

Thus, the two rates change in the same direction: They either both decrease or they both increase.
The proportionate (i.e., ignoring the 100) rate of change (= growth or reduction) in the two stillbirth rates are

$$
\begin{align*}
& \Delta S L B R / S L B R_{1}=\left(1000 \times S B_{1}\right) \times\left(k L B_{1}-L B_{2}\right) /\left(L B_{2} \times L B_{1}\right) \div\left(1000 \times S B_{1} / L B_{1}\right), \text { or } \\
& \Delta S L B R / S L B R_{1}=\left(k L B_{1}-L B_{2}\right) / L B_{2} \tag{A8}
\end{align*}
$$

and
$\Delta S T B R / S T B R_{l}=\left(1000 \times S B_{l}\right)\left(\left(k L B_{1}-L B_{2}\right) /\left(L B_{2}+k S B_{l}\right)\left(L B_{1}+S B_{1}\right)\right) \div\left(1000 \times S B_{l} /\left(L B_{1}+S B_{1}\right)\right.$
or

$$
\begin{equation*}
\Delta S T B R / S T B R_{l}=\left(\left(k L B_{1}-L B_{2}\right) /\left(L B_{2}+k S B_{1}\right)\right. \tag{A9}
\end{equation*}
$$

Dividing (A8) by (A9), we have

$$
\begin{equation*}
\left[\left(\Delta S L B R / S L B R_{l}\right) /\left(\Delta S T B R / S T B R_{l}\right)\right]=\left[\left(L B_{2}+k S B_{l}\right) / L B_{2}\right]>1 . \tag{A10}
\end{equation*}
$$

(A10) implies the absolute rate of change in SLBR must be greater than that in STBR. When the two rates are falling, it means the rate of fall in SLBR must be greater than that in STBR. When they are increasing, the rate of increase in SLBR must be greater than that in STBR.

The two life expectancies:
Subtracting the RHS of (5) in the text from $L E=L E L B$, we have

$$
\begin{align*}
& L E L B-L E T B=L E L B(1-(1000 /(1000+S L B R))), \text { or } \\
& L E L B-L E T B=L E-S A L E=S L B R \times L E /(1000+S L B R)>0 . \tag{A11}
\end{align*}
$$

Let $\triangle L E$ represent the excess of $L E$ over $S A L E$ (that equals the shortfall of $S A L E$ from $L E$). The partial derivative of $\Delta L E$ with respect to $S L B R$ is positive. That and (A11) tell us that greater is the $S L B R$ and/or greater is the $L E$, greater is $L E$'s excess over SALE (or, greater is SALE's shortfall from $L E$).

