
Appendix A: Details of the hierarchical gamma prior

In this appendix, we provide more background and visualization for the hierarchical gamma
prior we used for regularization. For the convenience, we use �(·) to denote the gamma
function, and G(a, b) to represent a gamma distribution with shape parameter a and rate
parameter b.

Following Proposition 1 in Armagan et al. (2011), for a random variable x drawn from
a normal distribution with two-layered gamma priors on variance

x ⇠ N (0, 1),  1 ⇠ G(↵, �), � ⇠ G(�, ⌫), (28)

is equivalent to the hierararchy

x ⇠ N (0, 1/⇢ � 1), ⇢ ⇠ T PB(↵,�, ⌫), (29)

where T PB(↵,�, ⌫) denotes the three-parameter beta distribution. The probability density
function of ⇢ is given as

f(⇢;↵,�, ⌫) =
�(↵+ �)

�(↵)�(�)
⌫�⇢��1(1� ⇢)↵�1[1 + (⌫ � 1)⇢]�(↵+�). (30)

In Figure A, we visualized the density of ⇢ in Equation (29) for ↵ = � = 0.5, and under
di↵erent values of ⌫ (Armagan et al., 2011). In this case, the prior distribution of x is equiv-
alent to a horseshoe prior, and ⇢ can be interpreted as the shrinkage coe�cient (Carvalho
et al., 2010).
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Figure A: The density of ⇢ drawn from a three parameter beta prior with
di↵erent values of ⌫. For all values of ⌫, we set ↵ = � = 0.5.

Specifically, for the case with four layers of gamma prior used in our work,

x ⇠ N (0, 2),  2 ⇠ G(↵, �), � ⇠ G(�,�), � ⇠ G(�, ⌧), ⌧ ⇠ G(⇠, ⌘),



is equivalent to

x ⇠ N (0, 1/⇢ � 1), ⇢ ⇠ T PB(↵,�, 1/⇣ � 1), ⇣ ⇠ T PB(�, ⇠, ⌘).

In our case, we set ↵ = � = � = ⇠ = 0.5 so both ⇢ and ⇣ recapitulate horseshoe priors (Ar-
magan et al., 2011; Gao et al., 2013; Zhao et al., 2016).
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Appendix B: Details of gradient computation and update equations

In this appendix, the equations for the objective function during optimization, update
equations for the parameters in the sparsity inducing prior and the gradients for the hyper-
parameters of the GP kernel are listed as reference.

The objective function to optimize for training one patient, Q(✓), is
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For update equations, we quoted from Zhao et al. (2016):
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For partial gradients used for optimization:
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Appendix C: Detailed results of imputation error and 95% coverage

We organized the detailed results of online imputation on all 24 covariates under the best

number of basis kernel (Q = 5 for HUP subsets and Q = 4 for the MIMIC-III subset) in

Figure B to Figure E. For Figure B and Figure C, the mean absolute errors (MAEs) for

each covariate is shown (in the original unit of measure). In Figure D and Figure E, we

showed the percentage for the prediction lied within the 95% confidence region (i.e. 95%

coverage). We put markers in the figures to indicate the best among all methods, and the

comparison of MedGP (sparse SM-LMC with online updating) against other methods. The

statistical significance were tested using paired t-tests on patient-level results.



/  /  /
best (significant / not significant against second best)/
Sparse SM-LMC (w/ update) statistically significantly improved against
   naive method /   univariate GP (SE or SM) /   PSM /   Sparse SM-LMC (w/o update) 

Figure B: Mean absolute error (MAE) for 12 out of 24 covariates tested. The

error bars denote ±1 standard error.



/  /  /
best (significant / not significant against second best)/
Sparse SM-LMC (w/ update) statistically significantly improved against
   naive method /   univariate GP (SE or SM) /   PSM /   Sparse SM-LMC (w/o update) 

Figure C: Mean absolute error (MAE) for 12 out of 24 covariates tested. The

error bars denote ±1 standard error.



   /  /
best (significant / not significant against second best)/
Sparse SM-LMC (w/ update) statistically significantly improved against
   univariate GP (SE or SM) /   PSM /   Sparse SM-LMC (w/o update) 

Figure D: The 95% coverage for 12 out of 24 covariates tested. The error bars

denote ±1 standard error. The red dashed line indicates 95%.



   /  /
best (significant / not significant against second best)/
Sparse SM-LMC (w/ update) statistically significantly improved against
   univariate GP (SE or SM) /   PSM /   Sparse SM-LMC (w/o update) 

Figure E: The 95% coverage for 12 out of 24 covariates tested. The error bars

denote ±1 standard error. The red dashed line indicates 95%.



Appendix D: Results under di↵erent number of basis kernels

In this appendix, we showed more detailed results of the experiments using di↵erent number
of basis kernels. We ran experiments with for Q = 1, · · · , 5 on all four subsets. The results
include all three subgroups in the HUP data set and the MIMIC-III heart failure subset.
We visualized the results in Figure F–U. We noticed that for most of the covariates,
the imputation performance (both MAE and 95% coverage) improves as the number of
Q increases. We also observed that the best number of Q varies across covariates under
di↵erent metrics. For instance, for lab covariates INR and PT, we observed that setting
Q = 1 or Q = 2 reduces MAE compared with Q = 5, but the coverage still improves after
Q = 2. Allowing more numbers of basis kernels increases the flexibility for customization,
but also increases complexity and thus the risk of overfitting for some covariates or patients.
Overall Q = 5 for HUP subsets and Q = 4 for the MIMIC-III subset reached the largest
number of covariates improved over the best of baselines using imputation error as the
performance metric. How to improve the performance for a specific clinical covariate at
patient-level would be one future direction of interest.



Figure F: The mean absolute error (MAE) of online imputation under di↵erent
Q for all cohorts. The error bars denote ±1 standard error.



Figure G: The mean absolute error (MAE) of online imputation under di↵erent
Q for all cohorts. The error bars denote ±1 standard error.



Figure H: The mean absolute error (MAE) of online imputation under di↵erent
Q for all cohorts. The error bars denote ±1 standard error.



Figure I: The mean absolute error (MAE) of online imputation under di↵erent
Q for all cohorts. The error bars denote ±1 standard error.



Figure J: The mean absolute error (MAE) of online imputation under di↵erent
Q for all cohorts. The error bars denote ±1 standard error.



Figure K: The mean absolute error (MAE) of online imputation under di↵erent
Q for all cohorts. The error bars denote ±1 standard error.



Figure L: The mean absolute error (MAE) of online imputation under di↵erent
Q for all cohorts. The error bars denote ±1 standard error.



Figure M: The mean absolute error (MAE) of online imputation under di↵erent
Q for all cohorts. The error bars denote ±1 standard error.



Figure N: The 95% coverage (in percentage) of online imputation under di↵erent
Q for all cohorts. The error bars denote ±1 standard error. The red dashed line indicates
95%.



Figure O: The 95% coverage (in percentage) of online imputation under di↵erent
Q for all cohorts. The error bars denote ±1 standard error. The red dashed line indicates
95%.



Figure P: The 95% coverage (in percentage) of online imputation under di↵erent
Q for all cohorts. The error bars denote ±1 standard error. The red dashed line indicates
95%.



Figure Q: The 95% coverage (in percentage) of online imputation under di↵erent
Q for all cohorts. The error bars denote ±1 standard error. The red dashed line indicates
95%.



Figure R: The 95% coverage (in percentage) of online imputation under di↵erent
Q for all cohorts. The error bars denote ±1 standard error. The red dashed line indicates
95%.



Figure S: The 95% coverage (in percentage) of online imputation under di↵erent
Q for all cohorts. The error bars denote ±1 standard error. The red dashed line indicates
95%.



Figure T: The 95% coverage (in percentage) of online imputation under di↵erent
Q for all cohorts. The error bars denote ±1 standard error. The red dashed line indicates
95%.



Figure U: The 95% coverage (in percentage) of online imputation under di↵erent
Q for all cohorts. The error bars denote ±1 standard error. The red dashed line indicates
95%.



Appendix E: Improvements in empirical runtime

In this appendix, we provide the comparisons in runtime with GPy (GPy, since 2012),

a state-of-the-art optimized Python library for GPs. We selected few benchmark cases

from the MIMIC-III subset, and profiled the runtime for performing one iteration when

using gradient-based optimizers. That is, the runtime for computing the gram matrix, log

marginal likelihood, and gradients of all parameters. The experiments were performed on

the machine with 20 Intel(R) Xeon(R) CPUs running at 2.50GHz (no GPUs were used). For

GPy implementation, we also allowed multithreading and the access to MKL optimization

for matrix operations, provided by Anaconda with academic license. In Figure V, we show

the average runtime for a single iteration under di↵erent number of basis kernels: Q = 1

and Q = 5, corresponding to 242 and 1114 parameters (D = 24, R = 8). We found that for

training cases smaller than 10
4
observations, GPy with multithreading is comparable to our

implementation. However, for the cases larger than 10
4
observations, our implementation

speeds up by up to 2.5 times. The largest case we tested here includes 29,525 observations.

Figure V: The empirical runtime of our implementation. A comparison of the

average runtimes for one iteration (including computation of gradients) for MedGP and

optimized baseline GPy.
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