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eMethods 

Model Development 

Three alternative models were considered: 1. logistic regression with lasso regularization implemented with the              
glmnet package in R ​(1)​, 2. XGBoost with a logistic objective implemented with the ​xgboost package in R ​(2)​, and                    
3. random forest implemented in R using the ​fest program ​(3)​. Empirical testing of model parameters was conducted                  
within 5-fold cross-validation within the training cohort where patients ​(4) are partitioned into five groups and five                 
models are learnt, each leaving out a different fifth for validation. Different parameters are compared by computing                 
the areas under the receiver operating characteristic (AUROC) and precision-recall curves (AUPRC) within each              
cross-validation fold and the mean AUROC and AUPRC across folds. 

Operating Threshold 

Given the predicted probabilities and known truths, a criterion is imposed to draw a single threshold that will                  
separate predicted positives from predicted negatives. The metric and value used is application specific and depends                
on the ‘cost’ of both types of errors ​(5)​. Low cost interventions such as further diagnostic testing will greatly differ                    
from a decision to perform costly treatment, for example. In this application, conservative identification of               
individuals at very high risk of near term death was the key objective as action will be taken only for those predicted                      
at risk. Therefore, an operating criterion of 75% positive predictive value (PPV; otherwise known as precision) was                 
selected—one false positive to three true positives.  

To improve threshold robustness, 1000 bootstrap iterations are used to compute a median threshold. In each                
iteration, 80% of the test set is sampled (with replacement), a precision-recall curve created and a threshold selected                  
at 75% PPV. The median threshold is then computed from the 1000 different values. This process adds robustness                  
which is especially important at the very high PPV range as each false positive estimated at very high risk can                    
greatly affect the path of the precision-recall curve at small cumulative samples.  

Evaluation in the Context of Potential Demographic Bias 

Given the demographic differences between development cohorts driven, in large, by structural differences across              
sites (observed in Table 1 and eTable 1), two experiments were conducted. First, as recommended by Mitchell et al.                   
(6)​, an investigation of model performance in intersectional sub-cohorts of increasing complexity is conducted.              
AUROC and AUPRC are measures of global model performance and do not accurately describe performance at a                 
particular threshold. To investigate differences in local performance across subpopulations, the procedure is repeated              
for false positive rate, false negative rate, false discovery rate and false omission rate. 

Second, an otherwise identical model is developed while strictly removing ‘sensitive’ demographics of race and               
ethnicity and several likely proxies of religion and preferred language. Sex and age can also be considered sensitive                  
demographics in applications outside healthcare (e.g. recidivism or lending). In this context of mortality risk it                
would be impractical to require equal, fair treatment across these groups and as such were not considered. To aid                   
direct comparison, identical model parameters are used to replicate an identical training procedure.  

These sensitive fields potentially help the classifier separate clusters of patients at different depths of the classifier’s                 
trees that subsequently improve learning. Accordingly, omission of these fields is expected to marginally reduce               
performance, at least in demographic sub-populations. To investigate any changes, an investigation of model              
performance in intersectional sub-cohorts is similarly performed for this ‘masked’ model. To investigate how the               
masked model compensates without proxies of race or ethnicity, feature importance of demographic predictors              
before and after masking is computed using selection frequency ​(7)​. 
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eResults 

Composite End-of-Life Outcome 

By combining the three available sources of patient outcomes (internal deaths, purchased deaths, and hospice               
discharges), 10,229 patient outcomes are discovered where 67% are affirmed by two or more sources (eFigure 1).                 
The largest group of single-source outcomes is the hospice group where 45% of all patients discharged to hospice                  
were subsequently lost to follow-up with no confirmed death or date of death (2,504 from 5,598). In the 3,094                   
admissions with both hospice and death outcomes, the median [IQR] time between discharge to hospice and death                 
was 9 [4, 18] days. The addition of hospice adds some ‘fuzziness’ to the outcome but only for the 30% of end-of-life                      
cases where the patient is discharged to hospice before death.  

Model Development 

Cross-validation across different parameter combinations found the random forest is relatively insensitive to             
parameters compared to the lasso regression and XGBoost alternatives. The random forest parameters with highest               
and most robust performance were 100 trees limited to a maximum depth of 1000. A final model was retrained on                    
the entire training set with these parameters and applied to the temporally separated testing cohort. The most                 
frequently selected predictors of the final model are reported in eTable 2.  

Evaluation in the Context of Potential Demographic Bias 

Testing Set Performance and Calibration 

Within the entire testing set, the learned classifier has good performance (Table 2) and successfully separates                
patients by mortality risk (eFigure 2B) while being sufficiently well calibrated throughout the risk spectrum (eFigure                
3A and B). The classifier also appears sufficiently well calibrated across locations (eFigure 3C and D), particularly                 
Brooklyn and Tisch Hospitals, despite the demographic and outcome differences observed between sites (eTable 1).               
Of note, the classifier tends to underestimate mortality risk for patients within the top percentiles (observed mortality                 
> estimated risk; intervals above the dashed diagonal line of eFigure 3) suggesting any selected threshold should                 
conservatively maintain desired PPV. 

Relatedly, the distributions of predicted probability within the testing set for the two general hospitals are                
remarkably similar only differing at the very high percentiles (eFigure 4; median [IQR] of Tisch vs Brooklyn 0.012                  
[0.0015, 0.044] vs 0.017 [0.0044, 0.046]). The Orthopedic hospital lags drastically with many fewer high risk                
patients (median [IQR], 0.00028 [0.00011, 0.0070]). These observations suggest a potential problem of             
infra-marginality that may challenge model fairness at any threshold ​(8)​.  

Intersectional Subcohort Performance 

To assess model fairness across sensitive demographics, global model performance (measured by AUROC and              
AUPRC) are compared across strata of sex, ethnicity and race as depicted as black intervals in eFigure 5A and B.                    
Furthermore, each strata is further separated by location (Brooklyn or Non-Brooklyn, combining Tisch and              
Orthopedic hospital) to assess the divide caused by population differences and underrepresentation during training.  

The reduced AUROC and AUPRC reported in Table 2 for the Brooklyn population are visible in almost all                  
subpopulations of eFigure 5A and B with marginal exceptions of higher AUROC in Asian and Black patients and                  
higher AUPRC in Black patients and men at Brooklyn. Of note, the Hispanic population at Brooklyn is likely                  
under-labeled in the demographic data leading to smaller than expected sample sizes which lead to the wide                 
confidence intervals observed.  

A similar analysis performed at a specific threshold corresponding to 50% PPV (as sample size was too small for                   
subpopulation analysis at our preferred 75% PPV), described similar patterns of performance differences in eFigure               
6A–D. False positive and false discovery rates are lower for all Brooklyn patients and in subpopulations of men and                   
White patients. False negative rate is higher for all Brooklyn patients and in subpopulations of women, White and                  
Other Race patients. False omission rate is higher for all Brooklyn patients, for both men and women as well as                    
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White patients. Unfortunately, the intersectional sample sizes limit more precise estimates especially for ethnicity              
and race subpopulations. Together these results suggest the site-specific differences and underrepresentation during             
training are causing the model to under-identify Brooklyn patients. 

Explicit Removal of Demographics 

The ‘masked’ model (trained on data with race, ethnicity and their proxies explicitly removed) results in model                 
performance as described in eTable 4. Interestingly, the removal of race and ethnicity results in marginally improved                 
testing set AUROC and AUPRC (comparing Table 2 and eTable 4) with little observable improvement across                
subpopulations (eFigure 5) with the exception of less variability in Hispanic patients at Brooklyn. When comparing                
error rates of the masked model to the unmasked model (eFigure 6), discrepancies between Brooklyn and                
Non-Brooklyn patients appear to be worsened across the board of false positive, false negative, and false omission                 
rates. The explicit removal of sensitive predictors worsen the site-based disparity observed.  

Exactly how the masking of race and ethnicity affects the classifier is difficult to determine. One may expect a shift                    
in reliance from these predictors to other proxies of race or ethnicity. The selection frequency of demographic                 
predictors used in the unmasked model (eFigure 7) describe the frequent use of each demographic including                
smoking status, sex, and age. When ethnicity, race, preferred language and religion are removed the selection                
frequency shifts randomly for the remaining demographics (‘X’ marks in eFigure 7) suggesting that none of these                 
predictors are latched onto by the masked model. Comparing the top predictors of the unmasked and masked models                  
in eTable 2 suggests little impact of masking race and ethnicity on these proxies of utilization where only 12 of 50                     
shift by more than ten places. 

When similarly thresholded to a prespecified PPV of 75%, the two models identify a similar order of magnitude                  
number of patients: 72 unmasked vs. 48 unmasked. However, there are only 31 patients in common. The ethnicity,                  
race, sex, and location demographics of these patients are described in eTable 5. The masked model identifies fewer                  
patients in total but the proportion of identified men and Asian patients increased (although the absolute number of                  
men and Asian patients identified remains lower). Of note, the masked model does not improve the                
underrepresentation of Brooklyn patients.  
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eFigures 

 

eFigure 1. ​Intersections between each of the three end-of-life outcome sources as an Upset chart. 
Notes: Outcomes from all admissions within 2015–2017 are included here such that individual patients can be counted more than once. Hospice                     
refers to discharge dispositions of either inpatient hospice or home hospice with the date of discharge used. Death refers to known dates of death                        
internal to the EHR of varying upstream sources. SSA refers to the purchased data derived from the Social Security Administration’s Master                     
Death File. 
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eFigure 2. ​Survival curves stratified by development group, risk group and demographics.  
A) model development cohort as well subgroups of the testing cohort by: B) estimated risk group, C) location, D) sex, E) ethnicity and F) race.  
Note: Risk groups are mutually exclusive such that the Moderate group consists of patients who did not exceed the threshold corresponding to                      
75% PPV but did exceed the one for 50% PPV. The unknown, other or patient refused options for sex, ethnicity and race were omitted for D) sex                           
and E) ethnicity but collapsed into Other for F) race.  
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eFigure 3.​ Calibration plots for the testing cohort and stratified by location.  
All testing patients A) by decile, and B) by percentile within the top decile of risk and C) by location and decile, and D) by location and percentile                            
within the top decile.  
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eFigure 4. ​Distributions of uncalibrated predicted probabilities stratified by site.  
A) Global distributions and B) distributions within the top 5%.  
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eFigure 5. ​Global (threshold-agnostic) model performance within sensitive strata for the unmasked and masked 
models.  
Median [95% CI] AUROC and AUPRC within sub-cohorts of location, gender, ethnicity, and race.  
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eFigure 6. ​Model errors within sensitive strata for the unmasked and masked models.  
Median [95% CI] False Positive Rate, False Negative Rate, False Discovery Rate and False Omission Rate, each at a threshold corresponding to                      
50% PPV, within sub-cohorts of location, gender, ethnicity, and race.  
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eFigure 7. ​Variable importance measured by selection frequency of each demographic feature in the final model.  
Points marked as ‘X’s indicate the shifted selection frequency after explicit masking of race, ethnicity, language and religion.   
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eTables 

eTable 1. ​Demographics, outcome, comorbidity, and model predictors of the testing set stratified by site. 
The Brooklyn hospital compared to the two non-Brooklyn locations combined.  

 

   All Testing Set Patients 
n = 46,458 

Manhattan 
n = 28,815 

Brooklyn 
n = 17,643 

 

Demographics ​a     

 Measure Value     

 Age % (n) % (n) % (n) * 

  18-29 13.1% (6087) 10.2% (2949) 17.8% (3138) 

  30-39 18% (8361) 18.4% (5308) 17.3% (3053) 

  40-49 9.69% (4504) 9.67% (2785) 9.74% (1719) 

  50-59 13.4% (6206) 14.3% (4123) 11.8% (2083) 

  60-69 17.3% (8026) 19.4% (5583) 13.8% (2443) 

  70-79 15.1% (7008) 16.4% (4712) 13% (2296) 

  80-89 10.2% (4748) 9.21% (2655) 11.9% (2093) 

  90+ 3.27% (1518) 2.43% (700) 4.64% (818) 

 Ethnicity ​b % (n) % (n) % (n)  

  Hispanic 8.62% (666) 8.52% (589) 9.52% (77) 

  Not Hispanic 91.4% (7060) 91.5% (6328) 90.5% (732) 

  Unknown -- (38732) -- (21898) -- (16834) 

 Race % (n) % (n) % (n) * 

  Black 10.7% (4987) 11.3% (3248) 9.86% (1739) 

  East Asian 9.1% (4230) 6.07% (1750) 14.1% (2480) 

  West Asian 1.74% (807) 2.18% (627) 1.02% (180) 

  White 57.3% (26642) 64.8% (18682) 45.1% (7960) 

  Other 18.8% (8714) 13.2% (3814) 27.8% (4900) 

  Unknown 2.32% (1078) 2.41% (694) 2.18% (384) 

 Sex % (n) % (n) % (n) * 

  Female 60.5% (28130) 59.2% (17063) 62.7% (11067) 

  Male 39.4% (18327) 40.8% (11751) 37.3% (6576) 

  Unknown 0% (1) 0% (1) -  

 Site % (n) % (n) % (n) * 

  Tisch 49.2% (22877) 79.4% (22877) - 

  Orthopedic 12.8% (5938) 20.6% (5938) - 

  Brooklyn 38.0% (17643) - 100% (17643) 
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   All Testing Set Patients 
n = 46,458 

Manhattan 
n = 28,815 

Brooklyn 
n = 17,643 

 

Outcomes ​c % (n) % (n) % (n)  

 Any known death 3.57% (1657) 2.86% (824) 4.72% (833) * 

 60-day death 5.2% (2414) 4.34% (1252) 6.59% (1162) * 

  Median [IQR] Median [IQR] Median [IQR]  

 Days from admission to death 21 [1, 93]  27 [3, 104] 13 [1, 74] * 

Comorbidities ​d Median [IQR] Median [IQR] Median [IQR]  

 Charlson Score 0 [0, 2] 0 [0, 2] 0 [0, 2] * 

  % (n) % (n) % (n)  

 AIDS/HIV 0.51% (176) 0.547% (129) 0.42% (47)  

 Cancer (any malignancy) 13.2% (4594) 15.3% (3609) 8.80% (985) * 

 Cerebrovascular disease 8.13% (2826) 7.60% (1792) 9.23% (1034) * 

 Chronic obstructive pulmonary disease 13.5% (4703) 12.1% (2858) 16.5% (1845) * 

 Congestive heart failure 8.56% (2978) 8.44% (1990) 8.82% (988)  

 Dementia 3.09% (1075) 1.96% (463) 5.46% (612) * 

 Diabetes with chronic complications 5.68% (1977) 4.35% (1025) 8.50% (952) * 

 Diabetes without chronic complications 14.4% (4995) 12.5% (2956) 18.2% (2039) * 

 Hemiplegia or paraplegia 2.35% (817) 2.08% (490) 2.92% (327) * 

 Metastatic solid tumour 4.55% (1584) 5.16% (1216) 3.29% (368) * 

 Mild liver disease 5.14% (1787) 5.11% (1205) 5.20% (582)  

 Moderate or severe liver disease 1.11% (385) 1.31% (310) 0.67% (75) * 

 Myocardial infarction 6.90% (2400) 6.21% (1465) 8.35% (935) * 

 Peptic ulcer disease 1.27% (443) 1.17% (275) 1.50% (168)  

 Peripheral vascular disease 9.97% (3469) 10.6% (2510) 8.56% (959) * 

 Renal disease 7.93% (2759) 7.24% (1708) 9.38% (1051) * 

 Rheumatoid disease 2.06% (718) 2.31% (545) 1.54% (173) * 

Predicted Risk % (n) % (n) % (n)  

 Any risk  76.7% (35620) 83.3% (24003)  65.8% (11617) * 

 High-risk 75% Positive Predictive Value 0.20% (72) 0.25% (59) 0.11% (13)  

 High-risk 50% Positive Predictive Value 0.91% (323) 1.06% (254) 0.59% (69) * 

Notes: 
*: Differences between Manhattan and Brooklyn patients within the testing set are computed with: 1) χ2 tests for demographics; 2)                    
proportion tests for individual comorbidities, mortality rates and predicted risk groups; and 3) Mann-Whitney tests for Charlson score                  
and days from admission to death. In all cases, statistical significance is indicated (*) for adjusted p < 0.05 using a Bonferroni                      
correction. 
a: Demographics coded within the EHR at the time of admission.  
b: Ethnicity contains many missing values which are omitted before computing the proportion and comparing between groups. 
c: Including death and initiation of hospice care.  
d: Comorbidities are derived from ICD-10 diagnosis codes present in each patient’s year of history pre-admission using the                  
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diagnostic groups of the Charlson Comorbidity Index as implemented in the comorbidity R package ​(9)​. Patients with no                  
documented history are omitted from the denominator of each comorbidity. 
eTable 2. ​Top 50 most selected model predictors.  
Comparing the final model and the experimental ‘masked’ model with race and ethnicity omitted. Highlights describe absolute rank differences                   
greater than 10. 

Final model  Masked model 

Rank Selection Frequency Predictor Rank Selection Frequency 

1 656 Maximum # of diagnosis codes per day 2 620 

2 641 Unique # of diagnosis codes 1 669 

3 625 Mean # of diagnosis codes per day 4 606 

4 619 Mean # of office visits per day 8 587 

5 600 Total # of office visits 7 596 

6 596 Unique # of offices visited 5 599 

7 587 Mean # of diagnosis codes per day 10 566 

8 561 Total # of diagnosis codes 3 617 

9 559 Office visits at 'NYU LANGONE HEALTH' 6 597 

10 554 Total # of diagnosis codes 31 492 

11 549 Maximum # of diagnosis codes per day 15 539 

12 543 Unique # of offices visited 11 562 

13 541 Maximum # of office visits per day 13 557 

14 539 Total # of office visits 27 497 

15 537 Mean # of office visits per day 12 559 

16 537 Office visits at 'NYU LANGONE HEALTH' 19 522 

17 530 Total # of office visits 9 571 

18 530 Office visits at 'NYU LANGONE HEALTH' 14 554 

19 525 Mean # of lab results per day 34 485 

20 523 Unique # of diagnosis codes 16 537 

21 520 Total # of diagnosis codes 26 503 

22 512 Mean # of diagnosis codes per day 36 482 

23 499 Maximum # of diagnosis codes per day 21 512 

24 493 Office visit of type 'Appointment' 25 504 

25 492 Mean # of diagnosis codes per day 33 485 

26 490 Unique # of offices visited 18 524 

27 489 Maximum # of administered medications per day 43 466 

28 489 Unique # of nonsurgical procedures 41 468 

29 488 Unique # of diagnosis codes 38 480 
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30 483 Mean # of office visits per day 42 467 

Final model  Masked model 

Rank Selection Frequency Predictor Rank Selection Frequency 

31 480 Total # of diagnosis codes 44 466 

32 479 Minimum # of lab results per day 40 475 

33 477 Total # of lab results 23 507 

34 476 Range over # diagnosis codes each day 56 424 

35 476 Total # of nonsurgical procedures 29 493 

36 474 Mean # of nonsurgical procedures per day 47 461 

37 469 Minimum # of diagnosis codes per day 17 525 

38 467 Maximum # of office visits per day 48 460 

39 467 Office visits at 'NYU LANGONE HEALTH' 45 465 

40 465 Maximum # of diagnosis codes per day 20 512 

41 464 Office visits with appointment length '15' 37 481 

42 461 Unique # of diagnosis codes 32 490 

43 459 Maximum # of office visits per day 51 432 

44 459 Unique # of offices visited 30 493 

45 452 Maximum # of lab results per day 24 506 

46 452 Total # of office visits 35 484 

47 451 Unique # of lab results 22 510 

48 445 Mean # of office visits per day 46 463 

49 438 Office visit of type 'Appointment' 49 460 

50 435 Variance of # of office visits per day 50 440 
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eTable 3. ​Model performance after ablating one category of data.  
Performance of the final model when applied to five testing sets each with a different category of data removed.  

Cohort Ablation Measure AUROC AUPRC 

Testing None (Table 2) Median 
[95% CI] 

87.2 
[86.1, 88.2] 

28.0 
[25.0, 31.0] 

Encounters Median 
[95% CI] 

86.0 
[85.6, 86.5] 

23.3 
[22.1, 24.4] 

Diagnoses Median 
[95% CI] 

85.8 
[85.3, 86.3] 

24.0 
[22.9, 25.3] 

Procedures Median 
[95% CI] 

87.1 
[86.6, 87.6] 

27.2 
[25.9, 28.5] 

Medications Median 
[95% CI] 

87.2 
[86.7, 87.7] 

27.8 
[26.6, 29.2] 

Lab Results Median 
[95% CI] 

86.4 
[85.9, 86.8] 

24.5 
[23.2, 25.7] 

 

eTable 4. ​Ethnicity and race masked model performance.  
Performance within cross-validation, when applied to the test set and stratified by Brooklyn or not from the test set.  

Cohort Measure AUROC AUPRC 

Cross-validation 
 

 Mean 
[min, max] 

88.0 
[87.2, 88.7] 

27.7 
[25.8, 31.0] 

Testing  Median 
[95% CI] 

88.2 
[86.7, 89.8] 

29.5 
[24.4, 34.1] 

 Brooklyn  Median 
[95% CI] 

84.6 
[82.3, 87.2] 

27.4 
[21.3, 34.2] 

 Non-Brooklyn  Median 
[95% CI] 

90.0 
[88.1, 92.0] 

 32.3 
[25.2, 38.1] 
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eTable 5. ​Demographics of identified patients by final and race and ethnicity masked models. 

  Final model 
(n=72) 

Masked model 
(n=48) 

Ethnicity Hispanic 2.78% (2) 0% (0) 

Race Asian 20.8% (15) 29.2% (14) 

 Black 6.94% (5) 6.25% (3) 

 White 55.6% (40) 47.9% (23) 

 Other Race 15.3% (11) 16.7% (8) 

Sex Female 50% (36) 39.6% (19) 

 Male 50% (36) 60.4% (29) 

Location Brooklyn 18.1% (13) 18.8% (9) 

 Non-Brooklyn 81.9% (59) 81.2% (39) 
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