
Page 1 of 10

Appendix
Additional MPC Subprotocols

This part of the Appendix contains additional protocols of our MPC-based

PPKE solution, SPIKE, that are similar to the ones presented in the main

part and, thus, referred to the appendix.

Additional Protocols for the Compatibility Matching

This subsection presents additional subprotocols for the compatibility

matching phase.

Supplementary Table 1 evalHLA(〈hlad〉B:
vector,〈hlar〉B: vector) → int

1: 〈mm〉B ← {〈0〉B}|HLA|

2: for i = 0, . . . , |HLA| − 1 do
3: 〈mm〉B ← 〈hlad〉B[i]⊕ 〈hlar〉B . SIMD
4: end for
5: 〈sum〉B ← HammingW({〈0〉B}|HLA|, 〈mm〉B)
6: 〈c〉B ← 〈sum〉B < 〈5〉B
7: 〈b〉B ← 〈sum〉B < 〈3〉B
8: 〈a〉B ← 〈sum〉B == 〈0〉B
9: return 〈a〉B ?

〈A〉B
(
〈b〉B ? 〈B〉B :

(
〈c〉B ? 〈C〉B : 〈0〉B

))
HLA Antigen Comparison
In Supplementary Table 1, we compare the HLA antigens of the potential

recipient and donor and determine the number of HLA mismatches. It takes

two vectors hlad and hlar with the HLA antigens of the donor and recipient

respectively as input. The number of |HLA| is public, as it is a fixed value.

The vector mm indicates the HLA mismatches of the donor and the

recipient. A mismatch occurs if either donor or recipient has a HLA antigen

that the other does not have (cf. Line 3). For enhanced efficiency, we

parallelize the comparison as SIMD operation, such that the vector mm is

computed in a single step. Afterwards, the number of HLA mismatches is

determined with a Hamming Weight Circuit (cf. Line 5). Based on the

number of mismatches, the subprotocol outputs an indicator for the quality

of the pairing w.r.t. the HLA antigens: Class A is an optimal fit with no

mismatches, class B is a good fit, and class C is an acceptable fit with 3-4

mismatches (cf. Lines 6-9).

MPC Cost

Line 3 in Supplementary Table 1 evaluates |HLA|×XOR gates (as SIMD).

Line 5 evaluates one Hamming Distance circuit. Lines 6-9 contain three

comparison and three MUX gates. Thus, the circuit’s multiplicative depth is

7, which is determined by the number of AND gates on the longest path.

Naively, using Yao’s Garbled Circuits (Y) seems to be most efficient.

However, considering that Table 4 is done in B sharing, the conversion cost

outweigh the benefits of using Y instead of B, thus, B is used here as well.

Supplementary Table 2 evalABO(〈bgd〉B : vector,
〈bgr〉B : vector) → int

1: 〈a〉B ← ¬
((
〈bgr〉B[0]⊕〈bgd〉B[0]

)
∨
(
〈bgr〉B[1]⊕〈bgd〉B[1]

))
2: 〈b〉B ←

(
〈bgr〉B[1] ∧ ¬〈bgd〉B[0]

)
∨
(
〈bgr〉B[0] ∧ ¬〈bgd〉B[1]

)
3: 〈v〉B ← 〈a〉B ∨ 〈b〉B
4: return 〈v〉B ? 〈bestage〉B : 〈0〉B

ABO blood group comparison
Supplementary Table 2 contains the privacy-preserving evaluation of the

compatibility of ABO blood groups of a donor and a recipient. It takes two

two-bit vectors as input: bgd ∈ {0, 1}2 is the blood group of the donor

and bgr ∈ {0, 1}2 is the blood group of the recipient. The blood group

encoding is shown in Supplementary Table 3. Lines 1-2 ensure that the

blood group of recipient and donor are compatible, i.e., they have to be

either equal, bgr[1] > bgd[0], or bgr[0] > bgd[1] (cf. Table 2).

Supplementary Table 3 Encoding of the different blood groups.

Encoding Blood Group

00 O
01 A
10 B
11 AB

MPC Cost

Here, we evaluate 14 XOR gates and five AND gates in total per

donor/recipient pair. As XOR gates can be locally evaluated, they are “for

free”. Therefore, the AND gates and circuit depth determine, which MPC

protocol is most efficient. B is slightly more efficient than Y since the

circuit depth is smaller than the number of total AND gates.

Supplementary Table 4 evalAge(〈ad〉B: int, 〈ar〉B: int)
→ int
1: 〈eq〉B ← 〈ad〉B == 〈ar〉B
2: 〈yg〉B ← ¬〈ad〉B ∧ 〈ar〉B
3: return 〈yg〉B ?(

〈eq〉B ? 〈A〉B : 〈B〉B
)

:
(
〈eq〉B ? 〈A〉B : 〈0〉B

)
Age Comparison
Supplementary Table 4 evaluates the compatibility of a donor and recipient

based on their age group. It takes the age group of the donor 〈ad〉B and

the age group of the recipient 〈ar〉B as input. Line 1 checks if they are in

the same age group and Line 2 evaluates whether the donor is in a younger

age group than the recipient. Afterwards, we compute the respective weight

of this donor and recipient constellation. Similarly, as in Supplementary

Table 1, class A indicates an optimal match, class B a good match, and

Eq denotes that recipient and donor are in the same age group.

MPC Cost

Supplementary Table 4 contains one comparison, one inversion, one AND

gate, and three MUX gates. As Line 1 and Line 2 are independent, similarly

as the two MUX gates in Line 3, the circuit depth is 3. Thus, this

subprotocol is slightly more efficient in B than in Y.

Supplementary Table 5 evalSex(〈sd〉B: int, 〈sr〉B: int)
→ int
1: 〈eq〉B ← 〈sd〉B == 〈sr〉B
2: 〈fdmr〉B ← 〈sd〉B ∧ ¬〈sr〉B
3: return 〈fdmr〉B ?(

〈eq〉B ? 〈A〉B : 〈0〉B
)

:
(
〈eq〉B ? 〈A〉B : 〈B〉B

)
Sex Comparison
Supplementary Table 5 evaluates the compatibility of a donor and recipient

based on their sex. It takes two secret shares 〈sd〉B and 〈sr〉B as input,

which represent the sex of the donor and recipient, respectively. In Line 1,

the subprotocol determines if the pair shares the same sex. Line 2 checks

whether the donor is female and the recipient male. As final step, the

output weight of this donor and recipient constellation is computed, i.e.,

the optimal combination (”Class A”) with equal sex receives the highest

weight, while a female donor and a male recipient are assigned the lowest

weight (0).

MPC Cost

Supplementary Table 5 evaluates one comparison, one inversion, one AND,

and three MUX gates. As Line 1 and Line 2, as well as two of the MUX gates

in Line 3, are independent, we have a circuit depth of 3. Thus,

Supplementary Table 5 is slightly more efficient in B than in Y.

Weight Comparison
Supplementary Table 6 evaluates the compatibility of a donor and recipient

based on their weight. It takes two secret shares as input: 〈wd〉B and

Page 2 of 10

Supplementary Table 6 evalWeight(〈wd〉B: int, 〈wr〉B:
int) → int

1: return 〈wd〉B < 〈wr〉B ? 〈0〉B : 〈A〉B

〈wr〉B , which represent the weight of the donor and recipient, respectively.

If the donor weighs less than the recipient, it returns a secret shared 0,

otherwise, it indicates a good fit (i.e., class ”A” w.r.t. criteria weight).

MPC Cost

We evaluate only one comparison gate. As the evaluation of a single

comparison is more efficient in Y than in B [1], Y would be more efficient.

However, the conversion cost outweigh this benefit, which is why B is used

for this subprotocol as in the previous comparison protocols.

Additional Protocols for the Cycle Computation

Supplementary Table 7 removeWeights(〈compG〉B:
matrix) → matrix

1: 〈uG〉A ← matrix ∈ 〈0〉A|pairs|

2: for i = 0, . . . , |pairs| − 1 do
3: for j = 0, . . . , |pairs| − 1 do
4: 〈uG〉A[i][j]←

b2a(〈compG〉B[i][j] > 〈0〉B ? 〈1〉B : 〈0〉B
5: end for
6: end for
7: return 〈uG〉A

Weight Removal
In Supplementary Table 7, we compute the unweighted compatibility graph,

which is used for determining the number of cycles for the desired cycle

length. It takes the weighted compatibility graph compG as input. The

number of donor-recipient pairs |pairs| is public. In Line 4, we remove the

edge weights: If it is greater than 0, it is set to 1, otherwise to 0. As

preparation for later processing, a conversion to A is done.

MPC Cost

The subprotocol shown in Supplementary Table 7 evaluates |pairs|2

comparisons, MUX gates, and conversions. The comparisons and MUX gates

are independent, which results in a circuit depth of 2. Due to the total

number of AND gates, which is 2× |pairs|, this subprotocol is most efficient

in B.

kNN Sort Protocol
Our next MPC subprotocol shown in Supplementary Table 8 is a k-nearest

neighbor sort (a slightly adapted version of the protocol in [2]) that

identifies the k most robust cycles (i.e., with the highest likelihood to result

in successful transplantations).

It takes a secret shared vector of tuples cyclesSet with exchange cycles and

their respective weights and k as input. The length of cycles cLen is a

public parameter. First, the subprotocol iterates over all cycles in

|cyclesSet| to perform an insertion sort. Each cycle and the respective

weight are added to sortedC and sortedW if its weight is one of the k

highest weights (cf. Lines 11 to 27). Thus, the final sortedW and sortedC

are sorted in decreasing order with respect to the weights of cycles.

MPC Cost

This subprotocol evaluates |cyclesSet| × k comparisons and

|cyclesSet| × k × (1 + cLen) MUX gates. It is most efficient in Y due to

depth of the circuit determined by the number of AND gates.

Duplicate Removal
Supplementary Table 9 removes all duplicated exchange cycles and outputs

the remaining |unique| = b |cycles|
cLen c cycles.

It takes a secret shared vector of tuples sortedCycles as input, which

contains cycles and weights sorted according to the respective weights (i.e.,

the output by Supplementary Table 8). The number of existing cycles

Supplementary Table 8 kNNSort(〈cyclesSet〉Y : vector
of tuples, k: int) → vector of cycles

1: 〈sortedW〉Y ← ∅
2: 〈sortedC〉Y ← ∅
3: for i = 0, . . . , k do
4: 〈sortedW〉Y .append(〈0〉Y)
5: 〈vertices〉Y ← ∅
6: for j = 0, . . . , cLen− 1 do
7: 〈vertices〉Y .append(|〈pairs〉Y |)
8: end for
9: 〈sortedC〉Y .append(〈vertices〉Y)

10: end for
11: for i = 0, . . . , |cyclesSet| − 1 do
12: 〈sortedW〉Y [k]← 〈cyclesSet〉Y [i][0]
13: 〈sortedC〉Y [k]← 〈cyclesSet〉Y [i][1]
14: for j = 0, . . . , k − 1 do
15: 〈sel〉Y ← 〈sortedW〉Y [j] > 〈sortedW〉Y [j − 1]
16: 〈tmp1〉Y ← 〈sortedW〉Y [j]
17: 〈tmp2〉Y ← 〈sortedW〉Y [j − 1]
18: 〈sortedW〉Y [j]← 〈sel〉Y ? 〈tmp2〉Y : 〈tmp1〉Y
19: 〈sortedW〉Y [j − 1]← 〈sel〉Y ? 〈tmp1〉Y : 〈tmp2〉Y
20: for l = 0, . . . , cLen− 1 do
21: 〈tmp1〉Y ← 〈sortedC〉Y [j][l]
22: 〈tmp2〉Y ← 〈sortedC〉Y [j − 1][l]
23: 〈sortedC〉Y [j][l]← 〈sel〉Y ? 〈tmp2〉Y : 〈tmp1〉Y
24: 〈sortedC〉Y [j − 1][l]←

〈sel〉Y ? 〈tmp1〉Y : 〈tmp2〉Y
25: end for
26: end for
27: end for
28: 〈result〉Y ← ∅
29: for i = 0, . . . , |cycles| − 1 do
30: 〈result〉Y .append(tuple(〈sortedW〉Y [i], 〈sortedC〉Y [i]))
31: end for
32: return 〈result〉Y

Page 3 of 10

|cycles|, the number of unique cycles |unique|, and the cycle length cLen

are public parameters. For each cycle c1 in sortedCycles, it is checked if it

is equal to any other cycle c2 (cf. Lines 6 to 13). If this is the case, its

weight is set to 0 (cf. Line 15). To each equality, it is evaluated if the

vertex of c1 at index l and the vertex of c2 at index (l + k) mod cLen

are identical (cf. Line 9). With Supplementary Table 8, sortedCycles is

sorted and only the |unique| cycles with the highest weight are returned.

The number of unique cycles is |unique| = b |cycles|
cLen c.

MPC Cost

Supplementary Table 9 has |cycles| ×
∑|cycles|

i=0 (cLen× (cLen− 1))

comparisons and AND gates, |cycles| ×
∑|cycles|

i=0 (cLen− 1) OR gates,

|cycles| MUX gates. Including Supplementary Table 8, this results in

|cycles| × |unique| comparison and MUX gates, and an additional

|cycles| × |unique| × (1 + cLen) MUX gates. This subprotocol is most

efficient in Y due to the depth of the circuit created by AND gates.

Supplementary Table 9 removeDuplicates(〈sortedCycles〉Y :
vector of tuples) → vector of cycles

1: for i = 0, . . . , |cycles| − 1 do
2: 〈c1〉Y ← 〈sortedCycles〉Y [i][1]
3: 〈combDup〉Y ← 〈0〉Y
4: for j = 0 : i do
5: 〈c2〉Y ← 〈sortedCycles〉Y [j][1]
6: for k = 1, . . . , cLen− 1 do
7: 〈duplicate〉Y ← 〈1〉Y
8: for l = 0, . . . , cLen− 1 do
9: 〈same〉Y ←

〈c1〉Y [l] == 〈c2〉Y [(l + k) mod cLen]
10: 〈duplicate〉Y ← 〈duplicate〉Y ∧ 〈same〉Y
11: end for
12: 〈combDup〉Y ← 〈combDup〉Y ∨ 〈duplicate〉Y
13: end for
14: end for
15: 〈sortedCycles〉Y [i][0]←

〈isDuplicate〉Y ? 〈0〉Y : 〈sortedCycles〉Y [i][0]
16: end for
17: return kNNSort(〈sortedCycles〉Y , |unique|)

Supplementary Table 10 #TotalCycles() → int

1: |allCycles| ← |pairs|
2: for i = 1, . . . , cLen− 1 do
3: |allCycles| ← |allCycles| · (|pairs| − i)
4: end for
5: return |allCycles|

Total Number of Cycles

Supplementary Table 10 computes the maximum number of cycles that can

exist in the compatibility graph. Each vertex must appear at most once in a

cycle, which limits the number of possible cycles. As the numbers of pairs

|pairs| and the cycle length cLen are public, computation can be done on

plaintext.

Additional Protocols for the Solution Evaluation

Disjoint Cycles

Supplementary Table 11 computes whether a cycle cCycle does not join

vertices with other cycles of a set of cycles cycles. It takes as input the set

of secret shared cycles cycles, the secret shared cycle cCycle, and the

number of cycles in cycles count. If another cycle shares a vertex with

cCycle, disJ is set to 1 (cf. Line 10). In Line 12, we invert the result for

further evaluation.

MPC Cost

In this subprotocol, we evaluate |cycles| × cLen (cf. Line 6). In Line 10, we

evaluate log2(cLen) OR gates. At the end, we evaluate one XOR gate. As

Supplementary Table 11 disjointSet(〈cycles〉B: vec-
tor of tuples, 〈cCycle〉B: vector, count: int) → Boolean

1: 〈disJ〉B ← ∅
2: for i = 0, . . . , count− 1 do
3: 〈c〉B ← 〈cycles〉B[i][1]
4: for j = 0, . . . , cLen− 1 do
5: for k = 0, . . . , cLen− 1 do
6: 〈tmp〉B ← 〈c〉B[j] == 〈cCycle〉B[k]
7: 〈disJ〉B.append(〈tmp〉B)
8: end for
9: end for

10: 〈disJ〉B ← ORTREE(〈disJ〉B)
11: end for
12: return ¬〈disJ〉B[0]

the number of total AND gates is greater than the depth of the circuit, this

subprotocol is most efficient in B.

Supplementary Table 12
findMaximumSet(〈cyclesSets〉Y : vector of tuples,
〈cycleW〉Y : vector) → tuple

1: 〈weights〉Y ← ∅
2: 〈tmp〉Y ← ∅
3: for i = 0, 1 do
4: 〈weights〉Y .append(〈0〉Y)
5: 〈sets〉Y ← ∅
6: for j = 0, . . . |unique| − 1 do
7: 〈vertices〉Y ← ∅
8: for j = 0, . . . cLen− 1 do
9: 〈vertices〉Y .append(〈|pairs|〉Y)

10: end for
11: 〈tmp〉Y .append(〈vertices〉Y)
12: end for
13: 〈sets〉Y .append(〈tmp〉Y)
14: end for
15: for i = 0, . . . , |unique| − 1 do
16: 〈weights〉Y [1]← 〈cycleW〉Y [i]
17: 〈sets〉Y [1]← 〈cycleSets〉Y [i]
18: 〈sel〉Y ← 〈weights〉Y [1] > 〈weights〉Y [0]
19: 〈tmp1〉Y ← 〈weights〉Y [1]
20: 〈tmp2〉Y ← 〈weights〉Y [0]
21: 〈weights〉Y [1]← 〈sel〉Y ? 〈tmp2〉Y : 〈tmp1〉Y
22: 〈weights〉Y [0]← 〈sel〉Y ? 〈tmp1〉Y : 〈tmp2〉Y
23: for j = 0, . . . , |unique| − 1 do
24: 〈tmp1〉Y ← 〈sets〉Y [1][j]
25: 〈tmp2〉Y ← 〈sets〉Y [0][j]
26: 〈sets〉Y [1][j]← 〈sel〉Y ? 〈tmp2〉Y : 〈tmp1〉Y
27: 〈sets〉Y [0][j]← 〈sel〉Y ? 〈tmp1〉Y : 〈tmp2〉Y
28: end for
29: end for
30: return (〈weights〉Y [0], 〈sets〉Y [0])

Maximum Set
Supplementary Table 12 computes the set of cycles with the highest sum of

weights, thus, the set of cycles with the highest probability for successful

transplantations. Note that we do not compute the globally optimal

solution, but a local optimum.

The subprotocol takes a secret shared vector of tuples cycles and a secret

shared vector weights as input. cycles contains all sets of disjoint cycles and

weights contains the respective weights of the each set. The number of

pairs |pairs| and the number of unique cycles |unique| are public

parameters. This subprotocol is a slight variation of Table 8 adapted to

here used data structures.

The parameter k is fixed to 1 since we look for the set with the highest weight.

Page 4 of 10

MPC Cost

This protocols evaluates |unique| comparison and 2|unique|2 + 2|unique|
MUX gates. Due to the large number of MUX gates in combination with the

number of AND gates determining the depth of the circuit, it is most

efficient in Y sharing.

Communication Improvement with ABY2.0

Implementing SPIKE in ABY2.0 [3] can further decrease the

communication cost. As the respective protocols were implemented only

very recently in MOTION2NX [4], we use ABY [1] in our benchmarks to

show practicality and additionally discuss the improvements that can be

achieved with ABY2.0 in the following.

ABY2.0’s improvements for secure multiplication with two inputs decreases

the communication of the first and second part, the compatibility matching

and the cycle computation. The improvements to conversions between

different sharing types additionally benefit the first and the second part, as

these parts contain the most conversions between B and A. Further, the

optimizations for matrix multiplications are beneficial for the second part.

Concretely, the communication of the protocol in Table 5 decreases from

3× `2 + 24× `+ 2× `× κ bits to 23× `+ `× κ bits in every iteration

of the inner loop (without considering the subprotocols). Similarly, the

communication of the protocol in Table 6 can be reduced from

`× (`
2 + 2× κ+ 4× |pairs|3 + 1.5) bits to `× (κ+ 2× |pairs|3 + 3)

bits, where ` is the bitlength and κ is the security parameter.

ABY Security Assumptions and Guarantees

The ABY MPC framework [1] provides mixed-abstraction building blocks

for the creation of highly efficient hybrid-protocol MPC applications in a

semi-honest adversary setting. Independent of the specific circuit design, a

number of base-OTs are executed in the beginning to setup OT Extensions.

The used base-OT primitive [5] guarantees security under the

Computational Diffie-Hellman (CDH) hardness assumption. Being closely

related to the discrete logarithm problem, this assumption is known to not

be quantum resistant. The OT Extension [6, 7] primitive uses fixed-key

AES modeled as a random permutation. While still considered secure in a

semi-honest setting, theoretical attacks in the active security setting have

been demonstrated [8]. Furthermore, ABY relies on the random oracle

assumption, implemented by the SHA256 hash function. Similarly, Yao’s

Garbled Circuits [9] (denoted by Y in our protocols) directly rely on the

random permutation assumptions, while Arithmetic and Boolean

Sharing [10] (denoted by A/B in our protocols) indirectly rely on those

assumptions as a source of randomness. Those protocols can achieve

information-theoretical security given a true correlated randomness source.

Detailed Benchmark Results

Supplementary Tables 13 to 15 show the detailed benchmark results for the

setup and online phase in all three described network settings (A: LAN +

10Gb/s, B: LAN + 1Gb/s, C: WAN) and a cycle length of L = 2.

Supplementary Tables 18 and 19 show the results for a cycle length of

L = 3.

Supplementary Table 20, finally, compares the benchmark results of both

reduced medical compatibility factor set and the full set. This benchmark

was performed in the two network settings A and C, as above.

Page 5 of 10

Supplementary Table 13 Comparison of the communication costs and setup and online runtimes of SPIKE for the three networking
configurations A: LAN + 10Gb/s, B: LAN + 1Gb/s, C: WAN, and for cycle length L = 2. This table contains the aggregated
total costs and the individual costs of Phase 1 (Compatibility Matching).

Pairs Comm. [MiB] Setup Phase [s] Online Phase [s]

Pairs Setup Online A B C A B C

Total

2 0.1 0 0.021 0.021 0.78 0.04 0.039 2.1
4 1.1 0.1 0.052 0.051 1.7 0.075 0.08 3.1
6 3.4 0.3 0.1 0.11 2.5 0.15 0.15 4.3
8 5.6 0.4 0.13 0.17 3 0.17 0.18 4.4

10 12.7 0.8 0.22 0.24 4 0.28 0.29 5.8
12 19.5 1 0.37 0.34 4.4 0.46 0.37 6.6
14 55.8 2.3 0.61 0.68 7.4 0.8 0.88 12
16 95.4 3.4 0.94 1.1 11 1.2 1.3 15
18 159 5.1 1.4 1.6 15 1.8 1.9 18
20 412.1 11.8 2.9 4.9 34 4.2 7.4 30
22 617.8 16.6 4.2 5.2 47 6.3 6.4 36
24 823.3 21.1 5.5 6.7 64 8.4 8.5 42
26 1,104.8 27 7.2 8.7 81 11 11 49
28 1,281.6 30.2 8.3 10 93 13 13 53
30 1,608.3 36.5 10 13 120 17 17 59
32 2,202.9 48.3 14 19 150 24 24 71
34 2,999.7 63.8 18 22 200 33 33 85
36 3,971.7 82.2 24 26 260 44 43 100
38 5,036.2 101.8 29 35 320 57 57 120
40 6,394 126.6 37 45 400 75 75 140

Phase 1: Compatibility Matching

2 0 0 0.0071 0.0065 0.31 0.015 0.015 0.85
4 0.1 0 0.0093 0.0087 0.42 0.016 0.015 0.85
6 0.2 0 0.012 0.013 0.52 0.017 0.017 0.85
8 0.4 0 0.016 0.016 0.62 0.019 0.018 0.84

10 0.6 0 0.02 0.021 0.62 0.021 0.021 0.85
12 0.8 0 0.026 0.025 0.65 0.024 0.024 0.85
14 1.2 0 0.031 0.032 0.72 0.028 0.028 0.86
16 1.5 0 0.036 0.038 0.75 0.034 0.031 0.86
18 1.9 0 0.047 0.045 0.82 0.033 0.033 0.86
20 2.4 0 0.053 0.054 0.85 0.039 0.039 0.88
22 2.9 0.1 0.055 0.065 0.87 0.045 0.046 0.88
24 3.4 0.1 0.071 0.073 0.9 0.05 0.049 0.89
26 4 0.1 0.075 0.083 1 0.051 0.056 0.9
28 4.6 0.1 0.077 0.085 1 0.059 0.06 0.91
30 5.3 0.1 0.081 0.088 1.1 0.068 0.067 0.97
32 6.1 0.1 0.084 0.09 1.1 0.071 0.069 0.98
34 6.8 0.1 0.087 0.092 1.1 0.079 0.083 0.97
36 7.7 0.1 0.093 0.099 1.2 0.085 0.089 0.97
38 8.6 0.2 0.093 0.11 1.2 0.091 0.098 0.99
40 9.5 0.2 0.094 0.11 1.2 0.1 0.1 1

Page 6 of 10

Supplementary Table 14 Comparison of the communication costs and setup and online runtimes of SPIKE for the three networking
configurations A: LAN + 10Gb/s, B: LAN + 1Gb/s, C: WAN, and for cycle length L = 2. This table contains individual costs of
Phase 2 and 3 (Cycle Computation and Evaluation).

Pairs Comm. [MiB] Setup Phase [s] Online Phase [s]

Pairs Setup Online A B C A B C

Phase 2: Cycle Computation

2 0 0 0.0099 0.0099 0.43 0.013 0.012 0.75
4 0.2 0 0.013 0.013 0.54 0.014 0.014 0.76
6 0.4 0.1 0.02 0.02 0.83 0.017 0.018 0.76
8 0.9 0.1 0.028 0.031 1 0.021 0.021 0.85

10 1.7 0.2 0.043 0.047 1.2 0.024 0.027 0.77
12 2.8 0.3 0.06 0.059 1.3 0.033 0.031 0.79
14 4.3 0.4 0.082 0.087 1.6 0.034 0.04 0.8
16 6.2 0.5 0.1 0.12 1.8 0.047 0.048 0.82
18 8.6 0.7 0.12 0.12 1.8 0.048 0.054 0.84
20 11.6 0.8 0.13 0.14 2 0.063 0.061 0.87
22 15.3 1 0.13 0.17 2 0.075 0.072 0.9
24 19.6 1.2 0.15 0.19 2.9 0.078 0.083 1.1
26 24.6 1.5 0.17 0.23 3.2 0.088 0.1 1.3
28 30.5 1.7 0.19 0.27 5 0.1 0.11 2.4
30 37.2 2 0.22 0.3 4.8 0.11 0.12 2
32 44.8 2.3 0.24 0.35 5.7 0.12 0.14 2.2
34 53.4 2.6 0.27 0.42 6.5 0.13 0.15 2.3
36 63 3 0.3 0.48 7.1 0.13 0.16 2.3
38 73.7 3.4 0.34 0.55 7.9 0.14 0.17 2.3
40 85.6 3.8 0.38 0.63 8.8 0.16 0.18 2.4

Phase 3: Cycle Evaluation

2 0.1 0 0.0023 0.0027 0.022 0.0086 0.0082 0.3
4 0.7 0.1 0.019 0.02 0.29 0.026 0.03 0.35
6 2.2 0.1 0.054 0.061 0.56 0.068 0.07 0.47
8 3.8 0.2 0.066 0.1 0.74 0.089 0.096 0.48

10 8.6 0.4 0.12 0.13 1.2 0.14 0.16 0.56
12 13.4 0.5 0.21 0.2 1.6 0.22 0.2 0.66
14 35 0.9 0.38 0.41 3.6 0.37 0.43 0.94
16 57.3 1.3 0.62 0.66 5.6 0.6 0.69 1.2
18 90.2 1.8 0.98 1 8.5 0.87 0.95 1.4
20 181.2 3.3 1.9 2.2 17 1.7 1.9 2.3
22 255.2 4.4 2.7 2.9 23 2.4 2.5 3
24 332.8 5.3 3.6 3.8 30 3.1 3.1 3.7
26 431.8 6.5 4.7 4.9 39 4 4 4.5
28 514.4 7.2 5.5 5.7 46 4.7 4.7 5.3
30 635.1 8.4 6.9 7.3 57 6 5.9 6.4
32 815.8 10.4 8.9 12 73 7.5 9.7 8
34 1,037.4 12.8 11 12 92 9.4 9.3 10
36 1,292.4 15.4 15 14 110 12 10 12
38 1,567.8 18 18 19 140 14 14 15
40 1,894.4 21.2 22 23 170 18 18 18

Page 7 of 10

Supplementary Table 15 Comparison of the communication costs and setup and online runtimes of SPIKE for the three networking
configurations A: LAN + 10Gb/s, B: LAN + 1Gb/s, C: WAN and for cycle length L = 2. This table contains individual costs of
Phase 4 (Solution Evaluation).

Pairs Comm. [MiB] Setup Phase [s] Online Phase [s]

Pairs Setup Online A B C A B C

Part 4: Solution Evaluation

2 0 0 0.002 0.0016 0.0071 0.0038 0.0037 0.22
4 0.2 0 0.01 0.01 0.42 0.02 0.021 1.2
6 0.5 0.1 0.019 0.019 0.63 0.044 0.045 2.2
8 0.5 0.1 0.018 0.019 0.62 0.045 0.045 2.2

10 1.8 0.2 0.043 0.041 0.96 0.088 0.088 3.6
12 2.4 0.2 0.078 0.055 0.84 0.18 0.11 4.3
14 15.4 0.9 0.12 0.15 1.5 0.37 0.39 9.4
16 30.4 1.6 0.18 0.26 2.5 0.55 0.55 12
18 58.2 2.6 0.27 0.44 4 0.8 0.84 15
20 216.9 7.6 0.84 2.5 14 2.4 5.4 26
22 344.5 11.2 1.3 2 21 3.8 3.9 31
24 467.5 14.5 1.7 2.7 30 5.2 5.3 36
26 644.4 19 2.3 3.5 38 7.2 7.4 42
28 732.1 21.1 2.5 3.9 41 8.3 8.4 44
30 930.7 26 3.2 4.8 53 11 11 50
32 1,336.2 35.5 4.5 5.7 73 16 14 60
34 1,902.1 48.2 6.4 9.2 100 23 23 72
36 2,608.7 63.7 8.7 12 140 32 32 86
38 3,386.1 80.2 11 16 180 43 43 100
40 4,404.4 101.4 15 21 230 57 57 120

Page 8 of 10

Supplementary Table 16 and Supplementary Table 17 compare the

communication size for cycle lengths L = 2 and L = 3 of this work to [11]

and [12], respectively.

Supplementary Table 16 Comparison of total communication
cost for cycle length L=2.

Pairs Communication [MiB]

Pairs This Work Breuer et al. 2022

10 13.4 759
20 423.9 13,311.9
30 1,644.8 71,679.7
40 6,520.6 266,238.8

Supplementary Table 17 Comparison of total communication
cost for cycle length L=3.

Pairs Communication [MiB]

Pairs This Work Breuer et al. 2020

3 0.6 0.4
5 4.3 40
7 20.5 200
9 54.1 5,632

15 2,107.3 –
18 9,644.8 –

Author details
References

1. Demmler, D., Schneider, T., Zohner, M.: ABY - A Framework for

Efficient Mixed-Protocol Secure Two-Party Computation. Network and

Distributed System Security Symposium(NDSS) (2015)

2. Järvinen, K., Leppäkoski, H., Lohan, E.-S., Richter, P., Schneider, T.,

Tkachenko, O., Yang, Z.: PILOT: Practical Privacy-Preserving Indoor

Localization Using OuTsourcing. In: IEEE European Symposium on

Security and Privacy (EuroS&P) (2019)

3. Patra, A., Schneider, T., Suresh, A., Yalame, H.: ABY2.00: Improved

Mixed-Protocol Secure Two-Party Computation. In: 30th USENIX

Security Symposium (USENIX Security 21), pp. 2165–2182 (2021)

4. Braun, L., Cammarota, R., Schneider, T.: POSTER: A Generic Hybrid

2PC Framework with Application to Private Inference of Unmodified

Neural Networks (Extended Abstract). Privacy in Machine Learning

Workshop (PriML@NeurIPS’21) (2021)

5. Naor, M., Pinkas, B., Pinkas, B.: Efficient Oblivious Transfer

Protocols. In: Proceedings of the Twelfth Annual ACM-SIAM

Symposium on Discrete Algorithms (2001)

6. Ishai, Y., Kilian, J., Nissim, K., Petrank, E.: Extending Oblivious

Transfers Efficiently. In: Advances in Cryptology - CRYPTO 2003, vol.

2729 (2003)

7. Asharov, G., Lindell, Y., Schneider, T., Zohner, M.: More Efficient

Oblivious Transfer Extensions. Journal of Cryptology 30(3) (2017)

8. Guo, C., Katz, J., Wang, X., Yu, Y.: Efficient and Secure Multiparty

Computation from Fixed-Key Block Ciphers. In: 2020 IEEE

Symposium on Security and Privacy (SP), pp. 825–841 (2020). IEEE

9. Yao, A.C.-C.: How to Generate and Exchange Secrets. In: 27th Annual

Symposium on Foundations of Computer Science (SFCS 1986) (1986)

10. Goldreich, O., Micali, S., Wigderson, A.: How to Play ANY Mental

Game. In: Proceedings of the 19th Annual ACM Symposium on

Theory of Computing. STOC ’87 (1987)

11. Breuer, M., Meyer, U., Wetzel, S., Mühlfeld, A.: A Privacy-Preserving

Protocol for the Kidney Exchange Problem. WPES (2020)

12. Breuer, M., Meyer, U., Wetzel, S.: Privacy-Preserving Maximum

Matching on General Graphs and its Application to Enable

Privacy-Preserving Kidney Exchange. In: ACM Conference on Data

and Application Security and Privacy (CODASPY) (2022)

Page 9 of 10

Supplementary Table 18 Comparison of the communication costs and setup and online runtimes of SPIKE for the three networking
configurations A: LAN + 10Gb/s, B: LAN + 1Gb/s, C: WAN and for cycle length L = 3. This table contains the aggregated total
costs and the individual costs of Phases 1 and 2 (Compatibility Matching and Cycle Computation).

Pairs Comm. [MiB] Setup Phase [s] Online Phase [s]

Pairs Setup Online A B C A B C

Total

3 0.5 0.1 0.029 0.028 0.97 0.054 0.056 2.2
5 4 0.3 0.096 0.11 2.2 0.13 0.15 2.9
7 19.7 0.7 0.26 0.27 4.1 0.3 0.34 4.3
9 52.6 1.5 0.63 0.66 7.3 0.63 0.73 5.3

11 182.5 3.3 2 2.1 19 1.9 2 9.4
13 1,215.8 16.3 12 13 110 12 12 34
15 2,084.4 22.8 21 23 180 19 20 45
17 5,428.5 58.1 52 56 440 54 54 93
18 9,537.2 107.6 88 95 740 100 100 150

Phase 1: Compatibility Matching

3 0.1 0 0.0079 0.0075 0.32 0.015 0.015 0.85
5 0.1 0 0.011 0.01 0.42 0.016 0.016 0.85
7 0.3 0 0.014 0.014 0.52 0.018 0.018 0.85
9 0.5 0 0.019 0.018 0.61 0.019 0.02 0.85

11 0.7 0 0.023 0.024 0.64 0.023 0.023 0.86
13 1 0 0.029 0.029 0.72 0.025 0.024 0.86
15 1.3 0 0.034 0.036 0.74 0.029 0.029 0.86
17 1.7 0 0.041 0.043 0.77 0.035 0.034 0.87
18 1.9 0 0.042 0.049 0.82 0.035 0.034 0.87

Phase 2: Cycle Computation

3 0.1 0 0.013 0.012 0.54 0.014 0.013 0.76
5 0.4 0 0.018 0.019 0.83 0.016 0.016 0.76
7 1.1 0.1 0.029 0.031 1 0.019 0.019 0.77
9 2.2 0.2 0.052 0.053 1.3 0.024 0.023 0.77

11 3.8 0.3 0.072 0.079 1.5 0.026 0.029 0.78
13 6.2 0.4 0.1 0.11 2 0.032 0.034 0.84
15 9.3 0.5 0.1 0.13 1.8 0.036 0.04 0.81
17 13.4 0.7 0.12 0.15 2 0.049 0.049 0.86
18 15.8 0.8 0.13 0.16 2.2 0.047 0.054 0.91

Supplementary Table 19 Comparison of the communication costs and setup and online runtimes of SPIKE for the three networking
configurations A: LAN + 10Gb/s, B: LAN + 1Gb/s, C: WAN and for cycle length L = 3. This table contains the individual costs
of Phases 3 and 4 (Cycle and Solution Evaluation).

Pairs Comm. [MiB] Setup Phase [s] Online Phase [s]

Pairs Setup Online A B C A B C

Phase 3: Cycle Evaluation

3 0.3 0 0.0061 0.0068 0.1 0.022 0.022 0.42
5 3.4 0.2 0.06 0.071 0.6 0.089 0.1 0.53
7 17.9 0.6 0.2 0.21 2 0.22 0.27 0.71
9 49.1 1.2 0.54 0.56 4.8 0.53 0.63 1.1

11 172.4 2.6 1.8 2 16 1.7 1.7 2.2
13 1,005.9 9.1 11 12 89 9.1 9.1 9.6
15 1,773.8 12.8 19 21 160 16 16 16
17 4,213.3 26.5 47 50 370 38 38 39
18 6,735.8 42 79 82 590 65 65 65

Phase 4: Solution Evaluation

3 0 0 0.0024 0.0022 0.011 0.0038 0.0059 0.22
5 0.1 0 0.0083 0.0082 0.32 0.014 0.014 0.75
7 0.5 0.1 0.016 0.017 0.54 0.039 0.04 1.9
9 0.8 0.1 0.024 0.025 0.64 0.057 0.056 2.6

11 5.5 0.4 0.078 0.087 1 0.19 0.19 5.5
13 202.7 6.9 0.81 1.4 14 2.4 2.5 22
15 300 9.5 1.1 1.8 18 3.6 3.7 27
17 1,200.1 30.9 4.1 6 64 15 16 53
18 2,783.8 64.8 9.2 13 150 36 36 87

Page 10 of 10

Supplementary Table 20 Comparison of the setup and online runtimes of SPIKE for the reduced medical factor compatibility
matching and the full set in the two main networking configurations A: LAN + 10Gb/s, C: WAN.

Pairs Comm. [MiB] Setup Phase [s] Online Phase [s]

Pairs Setup Online A C A C

Reduced Medical Factor Set

2 0.1 0 0.0084 0.34 0.045 3
50 14.9 0.3 0.14 1.7 0.26 3.4

100 59.8 1.1 0.29 4.4 0.81 4.4
150 134.7 2.5 0.55 8.5 1.9 5.8
200 239.5 4.4 0.91 15 3.8 7.7
250 374.4 6.9 1.4 23 6.4 11
300 539.2 9.9 2 31 9.4 14
350 734 13.4 2.5 41 14 20
400 958.8 17.5 3.2 53 18 26
450 1,213.6 22.1 4.2 65 25 32
500 1,498.3 27.3 5.3 80 31 37
550 1,813.1 33 6.3 96 38 48
600 2,157.8 39.3 7.2 110 45 56
650 2,532.5 46.1 9 130 53 64

Full Medical Factor Set

2 0.1 0 0.013 0.88 0.047 3.4
50 44 11.8 0.51 4.6 1 5.2

100 177.1 47.1 1.3 14 4.7 12
150 399.2 105.9 2.8 29 12 24
200 710.5 188.3 5.1 48 22 41
250 1,110.9 294.3 7.6 71 35 64
300 1,600.4 423.8 12 100 51 92
350 2,179.1 576.8 14 140 66 120
400 2,846.8 753.4 18 180 86 160
450 3,603.7 953.5 23 230 110 200
500 4,449.6 1,177.2 28 280 140 250
550 5,384.7 1,424.4 35 340 170 300
600 6,408.9 1,695.2 41 410 200 350
650 7,522.2 1,989.5 48 480 240 420

