
F. de Carvalho et al.

SUPPLEMENTARY MATERIAL

Details on Response Patterns and Candidates
Selection Methods
Danilo F. de Carvalho1*, Uzay Kaymak1, Pieter Van Gorp2 and Natal van Riel3

Primary manuscript: Data-driven Meal Events Detection using Blood Glucose Response Patterns

*Correspondence:

d.ferreira.de.carvalho@tue.nl
1Jheronimus Academy of Data

Science, Eindhoven University of

Technology, ‘s-Hertogenbosch,

The Netherlands
2Industrial Engineering &

Innovation Sciences, Eindhoven

University of Technology,

Eindhoven, The Netherlands
3Department of Biomedical

Engineering, Eindhoven University

of Technology, Eindhoven, The

Netherlands

Full list of author information is

available at the end of the article

Introduction
This additional file is dedicated to give supplementary content to the methods

described in our work with title “Data-driven Meal Events Detection using Blood

Glucose Response Patterns”. It must be taken as a direct support content to the

latter, giving extra information and serving as an overview of specific concepts and

steps, facilitating the understanding of important aspects of the work presented in

the primary manuscript.

Identifying Response Patterns
The responses gathered from events are pieces of the blood glucose (BG) time

series with specific characteristics, and so can be seen as shapelets [1, 2], i.e., a

representation of a class that carry enough information to allow their identification

within a time series. Each response has its own uniqueness, however they tend to

share properties implicit to their shapes, and so can be grouped according to these

common facets [3]. The premise is that each resulting group/cluster can represent

their members while keeping their core information, and so preserve closely the

original aspects of their members’ data [4]. Previous works have shown methods on

grouping time series by their similarities making use of clustering algorithms [5, 6,

7, 8, 9, 10], and as part of our methods, we used the patterns’ identification step

described in our previous work [11], which follows the same rules and aspects. For

our approach, the center of each meal response cluster formed is used as a pattern,

hence the number of identified patterns is equal to the number of clusters used

during this same step.

Looking for Matches
After having the response patterns defined, and thus a set of patterns P =

{p0, p1, . . . , pi}, our proposed approach relies on searching for occurrences of such

patterns in the BG time series T by shape similarity. For that, the MASS [12] al-

gorithm is used, which generates and returns one distance profile [1] per queried

pattern.

Definition 1 (Distance Profile) Let Q be a subsequence taken as the query. For all

the possible windows of the same length of Q obtained by sliding across a time series

T , the Euclidean distance to Q is calculated and stored in a vector d. Such vector is

called distance profile in regard to the query Q, and have cardinality |T | − |Q|+ 1.

mailto:d.ferreira.de.carvalho@tue.nl


F. de Carvalho et al. Page 2 of 6

The set D = {d1, d2, . . . , di}, which includes all distance profiles generated using

patterns P = {p0, p1, . . . , pi} as queries, is generated over the entire BG signal taken

as a time series T , and become a fundamental part of the matches selection [1].

Algorithm 1 generalizes the match selection procedure applied in [11].

Algorithm 1 Selecting Matches
Require: T,D, n ▷ n is the number of top matches per pattern
Ensure: Matches as a subset of D
1: procedure SelectMatches(T,D, n)
2: C ← 2-D array of shape (len(D), n)
3: for i = 0, 1, . . . , len(D) do ▷ D = {d0, d1, . . . di}
4: d← D[i] ▷ Distance profile associated to pattern i
5: C[i]← SelectTopMatches(d, n)
6: end for
7: end procedure

Some important points are worth highlighting regarding this procedure:

• Patterns P are not needed in this step, as D contains the distance profiles

generated with – and associated to – each of them.

• The procedure works right away for the entire BG time series T , or any sub-

sequence of it, as the associated distance profiles are already known.

• SelectTopMatches (line 5 of Algorithm 1) returns the n sorted indices by

distance, resulting in a per pattern top-n smallest distance (N.B. highest

similarity) approach.

• The number of matches created is |C| = n× |P |.
In order to make the mentioned points clear, a sample of the applied procedure

can be shown in Figure 1. Matches are selected for a sample day of participant 588,

in other words, a subsequence of T (to be more precise, T588), using three patterns,

and n = 10. On the left side, each queried pattern is plotted together with the

subsequence with the smallest distance to the pattern (also highlighted in the BG

plot to the right). On the right side of the same figure, for each pattern, the BG

time series and the associated distance profile are plotted, the latter together with

triangle shaped marks placed on the starting point of each of the top-10 smallest

matches. The meal events are also present, and marked by vertical dashed lines.

One can note that all patterns had matches grouped in valleys of their respective

distance profiles. These valleys determine a group of neighbor subsequences that

have similar shape to the pattern, thus it is expected that for a match associated

to the lowest point (bottom) of a valley, a number of neighbor subsequences will be

comparable to it but less similar to the pattern, explaining the formed groups, and

making them the relevant match marking spots.

By analyzing the distance profiles, and how they vary creating these aforemen-

tioned valleys, it is worth noting that by increasing the value of n, more matches

will be spotted inside valleys the same way. In addition, for each increment in n,

the amount of matches is incremented by the number of patterns. For the meal

detection case, this ends up as a tweaking issue, where the optimum value for n

able to return a reasonable number of matches is unknown due to how different the

distance profiles generated per pattern are.

[1]Associated, D and P can also be seen as a set of pairs {(p0, d0), (p1, d1), . . . , (pi, di)}.



F. de Carvalho et al. Page 3 of 6

0 5 10 15 20

Data points

−2.0

−1.5

−1.0

−0.5

0.0

0.5

1.0

Z
-S
c
o
re

Cluster 0

Match

10-20 00 10-20 03 10-20 06 10-20 09 10-20 12 10-20 15 10-20 18 10-20 21

Time of the day

100

200

300

m
g
/d
l

Glucose

0 50 100 150 200 250

Data points

5

10

Z
-N
o
rm

.
E
u
c
l.
d
is
t.

Distance Profile

0 5 10 15 20

Data points

−2.0

−1.5

−1.0

−0.5

0.0

0.5

1.0

Z
-S
c
o
re

Cluster 1

Match

10-20 00 10-20 03 10-20 06 10-20 09 10-20 12 10-20 15 10-20 18 10-20 21

Time of the day

100

200

300

m
g
/d
l

Glucose

0 50 100 150 200 250

Data points

5

10
Z
-N
o
rm

.
E
u
c
l.
d
is
t.

Distance Profile

0 5 10 15 20

Data points

−1.5

−1.0

−0.5

0.0

0.5

1.0

Z
-S
c
o
re

Cluster 2

Match

10-20 00 10-20 03 10-20 06 10-20 09 10-20 12 10-20 15 10-20 18 10-20 21

Time of the day

100

200

300

m
g
/d
l

Glucose

0 50 100 150 200 250

Data points

5

10

Z
-N
o
rm

.
E
u
c
l.
d
is
t.

Distance Profile

Figure 1 Sample of identified matches. Matches found on day 2021-10-20 for participant 588
using the top-10 smallest distance-to-pattern approach [13].

For instance, an approach focusing on detecting three main meals in a day could

start by using n = 1, allowing each of the patterns to mark a single match, resulting

in 3 matches a day. This might lead to a perfect score, only if each pattern detects

exactly one type of meal (e.g., breakfast, lunch, and dinner). However, this approach

is restricting the patterns to happen only once in a day, which in a practical setting

is not what happens. Still in the n = 1 scenario, if a pattern is also tied to an event

that happen more often in a day (e.g., snacks, hypo-correction), it would still be

limited to 1 match, flagging exclusively a main meal or a possible snack. Intuitively,

an increment of n can be made, reaching now n = 2. This would allow that specific

pattern to mark a snack, however it would also force the other patterns to mark

an extra occurrence on top of their already marked meals, artificially pushing the

number of matches up to 6, very likely leading to errors. This incremental setting

tends to be arbitrary and not supportive of exceptional days, which do occur in free

living conditions, and are critically important to diabetics.

Depending on the signal, and pattern shapes, the number of occurrences will

clearly differ, and one pattern is more likely to have more similar occurrences than

others. Thus, determining a dynamic way of having a set of matches for a given

set of patterns and input subsequence becomes the next step for a more suitable

solution.

Candidates Selection
From the details given in the previous section, one can note that the selection of

matches is a critical part of the proposed method, and that the used top-n approach

is not without limitations. With that being said, the procedure of selecting candi-

dates, defined in Algorithm 2 as SelectCandidates, comes as a direct improve-

ment, or at any rate an alternative, to the previous SelectMatches procedure

found in Algorithm 1.

The main differences in the proposed candidates approach rely on the use of two

new introduced parameters, and how they are used in the algorithm’s scope:



F. de Carvalho et al. Page 4 of 6

Algorithm 2 Candidates Selection
Require: D, dcutoff ,∆valley ▷ Distance Profiles, distance cutoff, and valley length
Ensure: Candidates as a subset of D
1: procedure SelectCandidates(D, dcutoff ,∆valley)
2: C ← Empty set of time stamps
3: for i = 0, 1, . . . , len(D) do ▷ D = {d0, d1, . . . di}
4: d← D[i] ▷ Distance profile associated to each pattern i
5: c← ApplyDistanceCutoff(d, dcutoff )
6: c← GetV alleys(c,∆valley)
7: C ← C + c ▷ Add elements from c to C
8: end for
9: dmax ← ∆valley/2 ▷ Max allowed inner cluster distance
10: C ← AgglomerativeCluster(C, dmax) ▷ Step exclusive to the validation
11: return C
12: end procedure

dcutoff

A distance threshold used to filter out subsequences with low similarity to

the patterns. On our approach, the value is set by analyzing the estimated

distribution of distance values of the associated distance profile. For instance,

in Figure 2 such estimation is depicted for participant 588, and in this case,

4 ≤ dcutoff ≤ 5 would suffice, as the distance value is low enough to guarantee

a good similarity while keeping enough candidates.

∆valley

Defines how distant the selected candidates must be from each other. Sorted

by distance, and moving on an ascending direction – starting from the lowest

distance (highest similarity) to the highest (lowest similarity) –, all elements

of the generated distance profile are checked. An element is taken, and its

neighbors within a ∆valley margin are ignored, as they are very similar to the

element taken as reference, but less similar to the pattern. The next element is

taken, and, if not already ignored as a neighbor, the same procedure is applied

again. This is done until all elements are checked, and so the remaining are

returned as the set of candidates. This must be tweaked according to the type

of event in hands: if the events being handled happen with a short period

of time between them, ∆valley must be short enough to allow candidates to

appear in a similar frequency.

Figure 3 illustrates the influence of the combined use of dcutoff , and ∆valley

during the selection of candidates. Within the highlighted time window, only one

of the patterns (Pattern 1, or p1) provide relevant distances, as its distance profile

(Distance profile 1, or d1) is the only one that has satisfactory similar occurrences, or

values below the distance threshold, dcutoff , marked by the gray dashed horizontal

line. This distance values are now processed by GetV alleys, which makes use of the

∆valley parameter explained earlier, and ends up returning the selected candidates

marked by black dots.

Some relevant aspects of the candidates selection can be listed as follows:

• Both new parameters dcutoff and ∆valley allow for a more flexible control over

the number and quality of returned candidates.

– dcutoff allows for filtering low similarity values straight away.

– ∆valley can be specified according to the domain and type of events being

handled, and the frequency they commonly happen.



F. de Carvalho et al. Page 5 of 6

Figure 2 KDE of the distance profiles for setting dcutoff value. Kernel Density Estimation
(KDE) of the distance profiles used to determine the dcutoff parameter value for participant 588.

Figure 3 GetV alleys procedure. Combined use of dcutoff , and ∆valley when selecting
candidates in a specific example window of day 2021-10-23 of partcicipant 588, resulting in 3
candidates.

• No pattern is limited or forced to mark a fixed number of candidates, as the

most relevant occurrences will be dynamically selected (due to the combined

use of dcutoff and ∆valley).

The GetV alleys procedure is applied to each distance profile individually, thus the

resulting candidates set can still have elements placed too close (or even overlapping)

in time. To solve such issue, as a last filtering step, agglomerative clustering [14,

15, 16] is applied on the time axis for the full candidates set. This is done to group

candidates that appear too close in a specified period of time, and is controlled by

the inner cluster distance dmax, that in our case is set equal to ∆valley/2. This way

we try to keep the same candidates spacing determined by ∆valley in the previous

step, however now for the full resulting candidates set [2].

At this point, the patterns were extensively used as a full data-driven and unsu-

pervised filtering step in order to spot potential meal events through the selected

pattern matches/occurrences. With the set of matches at hand, a classification (su-

pervised) step can be done. This is why the method was named after candidates:

[2]During training, this step is skipped, as ignoring candidates could lead to an

undesired reduction in the amount of positives to train with.



F. de Carvalho et al. Page 6 of 6

every similar occurrence of the pattern must not be seen as meals yet, they are now

candidates still to be classified as such.

Author details
1Jheronimus Academy of Data Science, Eindhoven University of Technology, ‘s-Hertogenbosch, The Netherlands.
2Industrial Engineering & Innovation Sciences, Eindhoven University of Technology, Eindhoven, The Netherlands.
3Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands.

References
1. Ye L, Keogh E. Time Series shapelets: A new primitive for data mining. In: Proceedings of the 15th ACM

SIGKDD International Conference on Knowledge Discovery and Data Mining. KDD ’09. New York, NY, USA:

Association for Computing Machinery; 2009. p. 947–956.

2. Yeh CCM, Zhu Y, Ulanova L, Begum N, Ding Y, Dau HA, et al. Time series joins, motifs, discords and

shapelets: a unifying view that exploits the matrix profile. Data Mining and Knowledge Discovery.

2018;32(1):83–123.

3. Caiado J, Ann Maharaj E, D’Urso P. Time-series clustering. Handbook of Cluster Analysis. 2015;p. 241–264.

4. Vlachos M, Lin J, Keogh E, Gunopulos D. A Wavelet-Based Anytime Algorithm for K-Means Clustering of

Time Series. In: In Workshop on Clustering High Dimensionality Data and Its Applications, at the 3 rd SIAM

Int’l Conference on Data Mining; 2003. p. 1–3.

5. Bezdek JC, Ehrlich R, Full W. FCM: The fuzzy c-means clustering algorithm. Computers and Geosciences.

1984 jan;10(2-3):191–203.

6. Liao Warren T. Clustering of time series data – A survey. Pattern Recognition. 2005;38(11):1857–1874.

7. Esling P, Agon C. Time-series data mining. ACM Computing Surveys. 2012 nov;45(1):1–34.

8. Ali M, Alqahtani A, Jones MW, Xie X. Clustering and Classification for Time Series Data in Visual Analytics:

A Survey. IEEE Access. 2019;7:181314–181338.

9. Ergüner Özkoç E. Clustering of Time-Series Data. In: Data Mining - Methods, Applications and Systems

[Working Title]. IntechOpen; 2020. .

10. Javed A, Lee BS, Rizzo DM. A benchmark study on time series clustering. Machine Learning with

Applications. 2020 sep;1:100001.

11. F de Carvalho D, Kaymak U, Van Gorp P, van Riel N. Population and Individual Level Meal Response Patterns

in Continuous Glucose Data. In: Information Processing and Management of Uncertainty in Knowledge-Based

Systems. IPMU 2022. vol. 1602 Communications in Computer and Information Science. Springer International

Publishing; 2022. p. 235–247.

12. Yeh CCM, Zhu Y, Ulanova L, Begum N, Ding Y, Dau HA, et al. Matrix profile I: All pairs similarity joins for

time series: A unifying view that includes motifs, discords and shapelets. In: 2016 IEEE 16th International

Conference on Data Mining (ICDM); 2016. p. 1317–1322.

13. F de Carvalho D, Kaymak U, Van Gorp P, van Riel N. A Markov model for inferring event types on diabetes

patients data. Healthcare Analytics. 2022;2:100024.

14. Chidananda Gowda K, Krishna G. Agglomerative clustering using the concept of mutual nearest

neighbourhood. Pattern Recognition. 1978 jan;10(2):105–112.

15. Tokuda EK, Comin CH, Costa LdF. Revisiting agglomerative clustering. Physica A: Statistical Mechanics and

its Applications. 2022 jan;585:126433.

16. Cai J, Hao J, Yang H, Zhao X, Yang Y. A review on semi-supervised clustering. Information Sciences. 2023

jun;632:164–200.


