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Online Resource 1. Description of the Agent Based Model according to the Overview, 

Design Concepts and Details protocol 

 

The Overview, Design concepts and Details (ODD) protocol published by Grimm et al. [31] in 2006 aims to 

standardise the description of the agent-based model (ABM) to make it more understandable to most readers. In 

this document, we follow the ODD protocol to describe an ABM we developed to simulate the behaviour of HIV 

infected patients (PHIV) from 2019 to 2023, and evaluate the economic impact of the introduction of generic 

antiretrovirals in France. 

 

1. Purpose 

The aim of the ABM described here is to simulate the follow up of PHIVs, and more precisely, the sequence of 

their treatment allocation. Each such treatment is defined as an ARV combination and whether each of the ARVs 

is taken as brand-name or a generic drug. Such outputs are further used to evaluate the follow-up cost of each 

patient in terms of treatment and to compare it to another follow up scenario in which only brand-name ARVs 

are prescribed, which allows an estimation of economic savings imputable to the entry of new generic ARVs on 

the French market. 

2. Entities, state variables and scales 

This model is only comprised of one type of agent, PHIVs. Their state variables are listed in table 1 included in 

the main manuscript. We should also consider the addition of the treatment as such a state variable. In fact, 

treatments are not directly adapted by PHIVs themselves, but rather by clinicians specialised in HIV 

management. However, considering that in France, all PHIVs are granted the same access to care in the context 

of the Long-Term Diseases scheme, it is better to consider treatment here as an adaptive trait rather than the 

result of an interaction with another type of entity (a clinician for example). 

3. Process overview and scheduling 

The scheduling of the process is presented in figure 2 in the form of an algorithm. The covariates and treatment 

updating phases of this algorithm are described in figure 1, included in the main manuscript. The process 

progresses by stages of six months over a five-year period. The state variables of each agent are re-evaluated at 
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each of these stages. The follow-up costs mentioned in the “Purpose” section are directly evaluated as the 

process advances. 

Fig.2 Scheduling of the process 
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4. Design concepts 

4.1. Emergence  

The main phenomena that we expect to emerge from the model presented here is the adaptation of treatment 

composition during follow-up of PHIVs as well as the integration in these treatments of generic ARVs just 

entering the French market. In fact, the consumption of generic ARVs by the PHIV population cannot be easily 

anticipated even with a set penetration rate, because the ARV combinations of treatments change in a complex 

way. 

4.2. Adaptation and fitness 

As described above, the only adaptive trait that PHIVs have is their treatment. They do not seek to directly 

improve any measure of fitness. Instead, the model that adapts their treatment was trained to reproduce the 

allocations observed in the Dat’Aids database. It is assumed that such allocations are aimed at improving the 

patients’ condition as they were chosen by HIV management experts. 

4.3. Prediction 

As a consequence of the changes in their treatment, the condition of PHIVs may also change over time. These 

changes are also modelled from data and will be discussed in further detail in later sections. 

4.4. Sensing 

Each PHIV is assumed to be aware of all his state variables at current and previous stages. Consequently, every 

state variable is taken into consideration during the updating of the treatment phase of the process. 

4.5. Interaction 

There is no interaction between PHIVs. 

4.6. Observation 

The data collected from the AMB are the treatment sequence of each PHIV, which include ARV combinations 

and whether branded or generic version of these ARVs is used. 
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5. Initialisation 

The initial state of the cohort evolving through the ABM consists of the values of state variables identified in the 

Dat’Aids database on 31 December 2015, which includes 27,341 PHIVs. This setup is always the same at the 

start of every simulation run. However, incident cases are added at each stage of the process and are initialised 

by random drawing among the initial PHIVs of the cohort. 

 

6. Input data 

As described in the main manuscript, the model uses three hyperparameters as input. The first is the time 

between the marketing authorisation dates (MAD) of a brand-name drug and its generics. The second is the 

maximum penetration rates of generics. The actual penetration rate of a generic drug is set to grow linearly to the 

maximum penetration rate over the year following its entry on the French market. The last input is the 

percentage of brand-name drug rate that is used as the rate for generics on entry on the market. Sensitivity 

analyses on the cost outputs of the model can be conducted according to these inputs. 

 

7. Sub-models 

To describe the sub-models involved in the process, some notations (?) must be introduced. For the rest of this 

section, the correspondence between state variables and their abbreviations is indicated in table 5 below. 

Table 5. Abbreviations of state variables. 

State variables Abbreviation 

Age  𝐴𝐺𝐸 

Duration of the current treatment  𝑇𝑅𝐸𝐴𝑇𝐷 

Duration of the HIV infection  𝐻𝐼𝑉𝐷 

Country of birth 𝐵𝐶 

Gender 𝑆𝐸𝑋 

Route of contamination 𝐶𝑂𝑁𝑇𝐴 

Cardiovascular disease 𝐻𝐸𝐴𝑅𝑇 

Diabetes 𝐷𝐼𝐴𝐵 

CDC stage C 𝐻𝐼𝑉𝑆 

Creatinine clearance (mL / min / 1.73 

m²) 

𝐶𝑅𝐸𝐴 

HIV RNA (viral load, in copies / mL) 

 

𝑅𝑁𝐴 

Patient being alive 𝐴𝐿𝐼𝑉𝐸 
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For any given PHIV indicated by 𝑖, any state variable: 𝑉 and for 𝑢 = 2, … ,10, we will indicate by 𝑉(𝑢, 𝑖) the 

value of state variable 𝑉 for PHIV 𝑖, at stage 𝑢. 

 

7.1.  Step 1: Updating patients’ covariates 

 

To update the patients’ covariates at each stage, different models are involved depending on the nature of the 

covariates and the desired precision for the simulations: 

Time-fixed covariates. For 𝑢 = 2, … ,10, we have 𝐺𝐸𝑁𝐷𝐸𝑅(𝑢, . ) = 𝐺𝐸𝑁𝐷𝐸𝑅(1, . ), 𝐵𝐶(𝑢, . ) = 𝐵𝐶(1, . ) and 

𝐶𝑂𝑁𝑇𝐴(𝑢, . ) = 𝐶𝑂𝑁𝑇𝐴(1, . ). 

Deterministic time-dependent covariates. 𝐴𝐺𝐸 and 𝐻𝐼𝑉𝐷 change during patient follow-up because time is 

passes and these covariates are only a duration. The changes are only an increment of six months in the 

covariates. For 𝑢 = 2, … ,10, we have 𝐴𝐺𝐸(𝑢, . ) = 𝐴𝐺𝐸(𝑢 − 1, . ) + 6 and 𝐻𝐼𝑉𝐷(𝑢, . ) = 𝐻𝐼𝑉𝐷(𝑢 − 1, . ) + 6. 

𝑇𝑅𝐸𝐴𝑇𝐷 changes in the same way but must be reset to 0 in case the treatment is changed. 

 

𝑇𝑅𝐸𝐴𝑇𝐷(𝑢, . ) = {
𝑇𝑅𝐸𝐴𝑇𝐷(𝑢 − 1, . ) + 6                    if there is no treatment switch,
0                                       if there is a change in treatment at time 𝑇𝑢.

 

 

Time-varying covariates. Covariates 𝐻𝐼𝑉𝑆, 𝐻𝐸𝐴𝑅𝑇, 𝐷𝐼𝐴𝐵 and 𝐴𝐿𝐼𝑉𝐸 may change during patient follow-up. 

These changes can lead to a modification in patient treatment. The changes in these covariates is directed by 

Markov chains where the matrices of transition, indicated by 𝑴𝐻𝐸𝐴𝑅𝑇 , 𝑴𝐷𝐼𝐴𝐵, 𝑴𝐻𝐼𝑉𝑆 and 𝑴𝐴𝐿𝐼𝑉𝐸  are chosen to 

be constant. 

Time-varying covariates and randomness according to covariates. For 𝑅𝑁𝐴 and 𝐶𝑅𝐸𝐴, the matrices of 

transition, indicated by 𝑴𝑅𝑁𝐴 and 𝑴𝐶𝑅𝐸𝐴 cannot be assumed to be constant because these transitions depend on 

patients’ covariates. For these models, the probabilities of transition are modelled by logistic or polytomic 

regression. The covariates involved in the model are selected by a backward stepwise strategy.  
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For 𝑅𝑁𝐴(𝑢, . ), the covariates involved are 𝑅𝑁𝐴(𝑢 − 1, . ), 𝐺𝐸𝑁𝐷𝐸𝑅(𝑢 − 1, . ), 𝐴𝐺𝐸(𝑢 − 1, . ), 𝐶𝑂𝑁𝑇𝐴(𝑢 −

1, . ), 𝐻𝐼𝑉𝑆(𝑢 − 1, . ), 𝐻𝐼𝑉𝐷(𝑢 − 1, . ), 𝐻𝐸𝐴𝑅𝑇(𝑢 − 1, . ), 𝐼𝑅(𝑢 − 1, . ) and 𝑇𝑅𝐸𝐴𝑇𝐷(𝑢 − 1, . ). 

For 𝐶𝑅𝐸𝐴(𝑢, . ), the covariates involved are 𝐶𝑅𝐸𝐴(𝑢 − 1, . ), 𝐺𝐸𝑁𝐷𝐸𝑅(𝑢 − 1, . ), 𝐴𝐺𝐸(𝑢 − 1, . ), 𝑅𝑁𝐴(𝑢 −

1, . ), 𝐻𝐼𝑉𝑆(𝑢 − 1, . ), 𝐻𝐼𝑉𝐷(𝑢 − 1, . ), 𝐻𝐸𝐴𝑅𝑇(𝑢 − 1, . ) and 𝑇𝑅𝐸𝐴𝑇𝐷(𝑢 − 1, . ). 

 

Calibration of the execution models. Calibration of the models which means the estimation of the coefficients 

of 𝑴𝐻𝐸𝐴𝑅𝑇 , 𝑴𝐷𝐼𝐴𝐵 , 𝑴𝐻𝐼𝑉𝑆 and 𝑴𝐴𝐿𝐼𝑉𝐸 as well as the estimation of the parameters of the logistic (polytomic) 

regressions involved in the coefficients of 𝑴𝑅𝑁𝐴 and 𝑴𝐶𝑅𝐸𝐴  are derived from the DAT’AIDS database. 

 

7.2.  Step 2: Updating the treatment 

 

Updating the treatment at time 𝑢,  follows four rules: 

• Rule 1: a patient can keep his treatment, 

• Rule 2: a patient can switch from one treatment to another, 

• Rule 3: a patient can switch to the generic version of his treatment, 

• Rule 4: a patient who changes to a generic drug cannot change back to the brand-name drug as long as 

the treatment does not change. 

 

The execution models, accounting for these rules, are defined as: 

• Patients can switch for a treatment to another according to a Markov chain where the transition matrix 

is estimated from the DAT’AIDS database. For those transitions observed for a large number of patients 

in the DAT’AIDS, a logistic regression model is adjusted to model the transition probabilities as a 

function of some covariates. In this setting, the covariates involved are chosen case-by-case following a 

backward step-by-step strategy. When transitions are rare (less than 100 observations), the probability is 

considered as constant. 
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• Patients can switch to the generic version of their treatment. This happens with probability depending 

on time 𝑡 represented by Figure 3 and defined by: 

 

𝑃𝑅𝑂𝐵𝐶𝑂𝑁𝑉(𝑡) = {

0                                               if 𝑡 <  𝐺𝑀𝐴𝐷,

𝑃𝐸𝑁𝑅𝐴𝑇𝐸 
𝑡 − 𝐺𝑀𝐴𝐷

𝑃𝐸𝑁𝑇𝐼𝑀𝐸 − 𝐺𝑀𝐴𝐷
             if 𝐺𝑀𝐴𝐷 ≤ 𝑡 < 𝑃𝐸𝑁𝑇𝐼𝑀𝐸

𝑃𝐸𝑁𝑅𝐴𝑇𝐸                              if 𝑡 > 𝑃𝐸𝑁𝑇𝐼𝑀𝐸.

, 

 

Where 𝑃𝑅𝑂𝐵𝐶𝑂𝑁𝑉 denotes the probability at time 𝑡 of a PHIV switching from the brand-name to the generic 

version of one of the ARVs in their treatment; 𝑃𝐸𝑁𝑅𝐴𝑇𝐸 indicates the maximum penetration rate, 𝐺𝑀𝐴𝐷 the 

MAD of the generic drug and 𝑃𝐸𝑁𝑇𝐼𝑀𝐸 the time at which 𝑃𝐸𝑁𝑅𝐴𝑇𝐸 is reached. For the simulations of the 

main manuscript, 𝑃𝐸𝑁𝑇𝐼𝑀𝐸 was set to one year after the MAD of generics. 

 

7.3. Step 3: Updating the cohort 

 

At a given stage Tu, the cohort is updated by including 433 incident cases. This quantity was calculated with the 

literacy data given in the “Population” section. These initial state variable values of incident cases are randomly 

drawn from the initial DAT’AIDS cohort.  

A patient 𝑖 who died during the period [𝑢 − 1, 𝑢[, which means 𝐴𝐿𝐼𝑉𝐸(𝑢, 𝑖) = 1 and 𝐴𝐿𝐼𝑉𝐸(𝑢, 𝑖) = 0, is not 

removed but all his future costs are set to 0. 

Finally, let us denote 𝐹𝐷(𝑖) the duration of the follow-up (in semester) for patient 𝑖. 

 

7.4.  Step 4: Computation of the differential cost 

 

The differential cost 𝐷𝐶 for patient 𝑖 is defined by: 

𝐷𝐶(𝑖)  =  𝐶𝑂𝑆𝑇𝐵(𝑖) − 𝐶𝑂𝑆𝑇𝐺(𝑖) = ∑ (𝐶𝑂𝑆𝑇𝐵(𝑢, 𝑖) − 𝐶𝑂𝑆𝑇𝐺(𝑢, 𝑖))10
𝑢=1 , 
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where 𝐶𝑂𝑆𝑇𝐵(𝑖) represents the cost for patient 𝑖 with no switch to generics and 𝐶𝑂𝑆𝑇𝐺(𝑖)  represent the cost 

assuming a pre-specified scenario of switching to generics. The main indicator of interest is the total differential 

cost in five years for the French population, defined as the sum divided by the patients for the individual 

differential cost 𝐷𝐶(𝑖) times 19% which approximates the fraction of the French HIV population integrated in 

DAT’AIDS. Note that if a patient 𝑖 died during the period [𝑢, 𝑢 + 1[ his future costs are set to 0, which means 

that: 

𝐶𝑂𝑆𝑇𝐵(𝑣, 𝑖) = 𝐶𝑂𝑆𝑇𝐺(𝑣, 𝑖) = 0   for any 𝑣 ≥ 𝑢 + 1. 

As described later, patients may die before the end of the follow-up and incident cases are possible. The 

differential cost should be normalised according to the follow-up duration to define the normalised differential 

cost: 

𝑁𝐷𝐶(𝑖)  =
𝐷𝐶(𝑖)

𝐹𝐷(𝑖)
. 

Another indicator of interest is the average differential cost per patient per semester, defined as the average 

divided by the patients for the values of 𝑁𝐷𝐶(𝑖). 


