Estimation of outbreak severity and transmissibility: Influenza A(H1N1)pdm09 in households

Literature Review

Thomas House Nadia Inglis Joshua V Ross Fay Wilson Shakeel Suleman Obaghe Edeghere Gillian Smith Babatunde Olowokure Matt J Keeling

Methodology

Search

Searches were carried out in Medline, Pubmed and Web of Knowledge using the following basic search strategy: "(influenza OR flu) AND (house OR household OR households OR community OR communities) AND (attack OR transmission)".

Selection

Studies were included that: (1) considered transmission within households, as opposed to other contexts like schools; (2) related to influenza A(H1N1)pdm09, rather than other respiratory pathogens; and (3) either fitted household transmission models, or reported raw household secondary attack rates. Titles and abstracts were screened for relevant articles published (including online-first manuscripts) since the start of 2009 and before February 2011.

Validity assessment

Studies reporting only overall community attack rates, and those from which secondary attack rates could not be calculated were excluded from subsequent review. Studies which did not provide sufficient information in English for the purposes of the review were excluded, as were studies based on epidemics of other influenza strains, in particular seasonal influenza during the same timeframe.

Data abstraction

Two authors (TH and NI) duplicated the abstraction of data into Tables 1 and 2 below. This was done manually by reading the full published text of each article.

Study characteristics

7 studies were identified which fitted household transmission models (shown in Table 1) and 35 which reported raw household secondary attack rates (shown in Table 2).

Interpretation

In this paper, we make a distinction between the Secondary Attack Rate (SAR) and transmission probability, that does not always exist in other papers, but appears to be necessary to remove ambiguity. In Tables 1 and 2, we use the definitions

 $SAR = \frac{\text{Number of infected household contacts}}{\text{Number of household contacts}} \times 100\% ,$ $T_n^{a \to b} = \text{Probability of an infectious individual of age a transmitting to a susceptible individual of age b in a household of size n, ignoring other household members.}$

The mathematically unambiguous formula for T is given in Additional File 2.

Overall, the studies found present highly variable numerical estimates for SARs in descriptive studies, and transmission probabilities in model-based studies, making quantitative meta-analysis problematic [1]. This variability is likely to arise from a combination of factors: differences in household size distribution, case ascertainment (i.e. different case definitions used), household composition by age, and the effects of public health interventions. In our analysis, we consider the first two effects, but not the latter two. Therefore, we help to explain a proportion of the heterogeneity in reported household transmissibility of pandemic influenza, but it would require further work (and ideally access to all datasets found during the review) to disentangle the impact of all relevant factors.

Our search also produced several results that did not meet the criteria for inclusion into Tables 1 and 2, but which are clearly relevant for the current study. Girard et al. [2] wrote a broad review of the literature on pandemic influenza touching on epidemiology, virology and vaccination. Boëlle et al. [3] reviewed studies of non-household transmission parameters for pandemic influenza. Fraser et al. [4] use household data to infer probabilities related to asymptomatic transmission and acquisition of 1918 pandemic influenza, which is conceptually a different problem from ours but makes similar use of the structure of household final-size probabilities. Klick et al. [5] consider the design of household studies of infectious disease. Several studies we included considered the impact of pharmaceutical interventions; however, for non-pharmaceutical interventions like face masks and hand washing most studies considered non-pandemic influenza [6, 7, 8] while one reported results for influenza A(H1N1)pdm09 [9].

Study*	Dates	Population	Index	HH con-	Index	2° case	Model fitted, estimates and 95% CIs †
	(2009)		cases	tacts	case	def.**	
					det.**		
1. Yang	25 Mar – 29	First US households re-	5	13	PCR	PCR	T ranges between 0.2[0.1,0.4] and
et al. [10]	Apr	ported by CDC MMWR.					0.3[0.1,0.5] depending on assumptions
							about missing data.
2.	19 Apr – 25	US households reported	216	600	PCR	ARI or ILI	$T_2 = 0.22[0.1, 0.43],$ falling
Cauchemez	May	to CDC by state health					to $T_6 = 0.01[0, 0.06]$ for ARI;
et al. [11]		departments.					$T_2 = 0.14[0.05, 0.29],$ falling to
							$T_6 = 0.0045[0.0001, 0.03]$ for ILI.
3. Sugimoto	25 Apr – 9	Household contacts of	42	136	ILI+ or	ILI+ or	$T^{y \to y} = 0.108[0.047, 0.231],$
et al. [12]	Jun	index cases of ILI in			ARI	ARI	$T^{y \to o} = 0.025[0.008, 0.072]$ for
		youth camp members in					strictest ILI; $T^{y \to y} = 0.406[0.101, 0.805],$
		Washington State, US.					$T^{y \to o} = 0.223[0.049, 0.615]$ for ARI.
4. Ghani	27 Apr – 10	UK 'First Few Hun-	193	556	PCR	PCR or ILI	T fitted but numerical value not reported.
et al. [13]	Jun	dred' (FF100) dataset					Raw SAR given as 11.2% for ILI and 8.1%
		collated by the HPA.					for PCR.
5.	27 Apr – 30	Elementary school and	295	899	ARI	ARI	All index cases are at elementary
Cauchemez	May	semirural community in					school. $T_2^{y \to y} \approx 0.32[0.12, 0.65],$
et al. [14]		PA, USA.					$T_2^{y \to o} = 0.096[0.032, 0.24],$
							$T_6^{\overline{y} \to y} \approx 0.1[0.05, 0.15], T_6^{y \to o} =$
							0.026[0.015, 0.042].
6. van	29 Apr – 15	Cases reported to	47	109	PCR	PCR	Model is split into old and young (12
Boven et al.	Aug	RIVM, Netherlands,					and under). $T^{y \to y} = 0.13[0.0086, 0.42],$
[15]		through municipal					$T^{y \to o} = 0[0, 0.059], T^{o \to y} = 0[0, 0.059],$
		health authorities.					$T^{o \to o} = 0.057[0.014, 0.14].$

Table 1: Studies fitting a transmission model to data

7.	Klick	Apr – Oct	Prospective, random-	425 indivi	duals in	Sero	Sero	For any age <i>a</i> , $T^{a \to y} = 0.15[0.05, 0.28]$,
et al. [1	16]		ized, placebo-controlled,	117 households.				$T^{a \to o} = 0.07[0.00, 0.15]$. Distinction be-
			double-blind pilot study					tween initial and secondary cases not made
			of households in Hong					explicitly in study design.
			Kong.					
8.	This	5 May – 18	Laboratory-confirmed	424	1612	PCR	PCR, ILI	$T_2 = 0.677[0.548, 0.788], T_6 =$
study.		Jun	cases and their house-				or ARI	0.2[0.169, 0.239] (see Results section
			hold contacts in Birm-					for full set of parameter estimates). 'True'
			ingham, England.					SAR is 39.7[34.9,44.0]%

Notes: *all studies above are retrospective unless otherwise stated; **'PCR' means polymerase chain reaction, 'ILI' means diagnosis on rigorous criteria, 'ILI+' means several sets of criteria used, 'ARI' means diagnosis on wider symptomatic criteria, 'Sero' means seroconversion; $^{\dagger}\approx$ is used for estimates read from figures rather than numerical values.

Study*	Dates**	Population (Design)	Index	HH con-	Index	2° case	SAR estimate [95% CI
			cases	tacts	case	def.†	if reported] and notes
					def.		
1. Ca-	15 Apr – 15	Household contacts of index cases from	33	Not	PCR	PCR	17% overall.
latayud	May	school in London (primary and senior		given			
et al. [17]		school). (Retrospective)					
2. Carcione	29 May – 7	Household contacts of laboratory-	595	1466 /	PCR	ILI	15% /
et al. [18] /	Aug	confirmed cases in Western Australia.		1589			14.5[12.9,16.4]%,
3. Carcione		(Prospective)					decreasing with age.
et al. [19]							
4. Centers	29 Jun – 5	Household contacts (including student	4	54	PCR	PCR	26[7,33]% overall. No
for Disease	Jul	groups staying in same house/floor of ho-					access to antivirals.
Control and		tel) of first four laboratory-confirmed cases					
Prevention		identified in Kenya. (Retrospective)					
[20]							
5. Chang	Aug – Nov	Household contacts of patients at the	87	223	Lab	Lab	27% overall, reducing
et al. [21]		National Taiwan University Hospital.					with age.
		(Prospective)					
6. Cowling	Jul – Aug	Household contacts of individuals present-	41	115	PCR	PCR, ILI	8[3,14]% for PCR,
et al. [22]		ing with pandemic or seasonal influenza				or ARI	6[3,11]% for ILI,
		(confirmed by rapid testing) to outpatient					26[16,36]% for ARI.
		clinics across Hong Kong. Serology per-					
		formed for some cases. (Prospective)					
7. Serres	27 May – 10	Household contacts of individuals with	35	138	PCR	PCR or	23% for PCR, 53% for
et al. [23]	Jul	laboratory-confirmed H1N1 in Quebec,				ARI	ARI.
		Canada. (Prospective)					

Table 2: Studies reporting a 'raw' secondary attack rate

8. Doyle	14 – 30 Jun	Household contacts of boys (index cases)	43	87	PCR +	ILI	3.5% overall, 14.3% if
and Hopkins		who had attended an outdoor camp,			ILI		boys returned home 1
[24]		Florida. (Prospective)					day after symptoms ap-
							peared.
9. France	8 Apr – 27	Household contacts of children (index	222 / 32	702 / 79	PCR +	ILI /	11.3[8.8,13.7]% overall,
et al. [25] /	May	cases) associated with an outbreak in a New			ILI / PCR	Sero	decreasing with age /
10. Jackson		York High School. (Retrospective) / Sub-			+ Sero		19[10,28]% overall.
et al. [26]		set of this population. (Prospective)					
11. Gold-	mid-Apr –	Households in Milwaukee, US, with one	135	411	PCR	ILI	14[10,19]% of 95 house-
stein et al.	mid-Jun	laboratory-confirmed case known to the					holds where the index
[27]		City of Milwaukee Health Department.					case did not receive
		(Retrospective)					timely oseltamivir.
12. Komiya	16 – 31 May	Household contacts of index cases (first	124	379	PCR	PCR	3.7% overall, 26.1%
et al. [28]		laboratory-confirmed case in household)					without PEP.
		reported to health authorities in Osaka,					
		Japan. Assess effect of post-exposure pro-					
		phylaxis (PEP). (Prospective)					
13. Lee	24 Aug – 9	Korean households with at least one mem-	199	297	PCR	PCR	27.9% overall, decreas-
et al. [29]	Nov	ber laboratory-confirmed at Chung-Ang					ing with age.
		University Yongsan Hospital, Seoul. House-					
		holds with antiviral prophylaxis excluded.					
		(Restrospective)					
14. Leung	12 – 23 Jun	Household contacts of laboratory-	65	205	PCR	PCR	5.9[2.7,9.1]% overall,
et al. [30]		confirmed cases of H1N1 associated					decreasing with age.
		with a secondary school outbreak in Hong					Higher if no antiviral
		Kong. (Prospective)					prophylaxis.

15. Liu	31 May	Household/close contacts of cases (for	658	612	PCR	ILI	8.66% overall.
et al. [31]	2009 - 31	whom clinical information was available) re-					
	Mar 2010	ported to health authorities in Hangzhou,					
		China. (Retrospective)					
16. Looker	1 May – 31	Household contacts of laboratory-	132	351	PCR	ILI	33% overall.
et al. [32]	Aug	confirmed cases reported via a GP					
		sentinel surveillance scheme in Victoria,					
		Australia. (Retrospective)					
17.	15 Apr – 13	Households of High School Students, San	78	562	ILI	ILI	3.7% overall, 9.1% in 0-
Loustalot	May	Antonio, Texas. (Retrospective)					4 year olds.
et al. [33]							
18. Mo-	Sep – Oct	Household contacts of confirmed H1N1	69	432	PCR	ARI	16.9% overall.
hamed		cases presenting to King Khalid University					
et al. [34]		Clinics, Saudi Arabia. Prospective)					
19. Morgan	15 Apr – 8	Household contacts of index cases (first in	77	264	PCR	PCR, ILI	4% for PCR, 9% for ILI
et al. [35]	May	household with ARI, ILI or confirmed H1N1				or ARI	and 13% for ARI.
		infection) in Health Service Region 8, San					
		Antonio, Texas. (Retrospective)					
20. Nishiura	May 2009 –	Household members of index cases (with	1547 /	4609 /	PCR or	PCR or	11.4[10.5,12.3]% over-
and Oshi-	Feb 2010	laboratory-confirmed H1N1 or ILI) across	109	142	ILI	ILI	all, decreasing with
tani [36] /		Japan. (Retrospective)					age / 44.4% unvac-
21. Nishiura							cinated children, 11%
and Oshi-							vaccinated children.
tani [37]							
22. Odaira	16 May – 5	Household contacts of index cases (first	97	303	PCR or	PCR or	4.8% overall, decreasing
et al. [38]	Jun	case of ARI or laboratory-confirmed H1N1			ARI	ARI	with age.
		in house) following the first domestic out-					
		break in Kobe, Japan. (Prospective)					

23. Pang	16 May – 15	Household and other close contacts of	613	1228	PCR	PCR	5.3% overall, decreasing
et al. [39]	Sept	laboratory-confirmed index cases in Beijing,					with age.
		People's Republic of China (Prospective)					
		(Prospective)					
24. Papen-	27 May – 10	Household members of index cases (first	43	119	PCR	PCR,	45[35.6,53.5]% overall
burg et al.	Jul	laboratory-confirmed cases in house), Que-				Sero, ILI,	29% for ILI, 51% for
[40]		bec, Canada. All household members				ARI	ARI.
		swabbed, and all those over age 7 had					
		serum samples taken. (Prospective)					
25. Pebody	27 Apr – 21	Household members of index cases (first	285	761	PCR	PCR, ILI	8.1[6.4,10.3]% for PCR,
et al. [41]	Jun	laboratory-confirmed cases in house) in UK,				or ARI	10.5[8.5,12.9]% for
		earliest reported cases from "First Few Hun-					ILI, 16.7[14.1,19.6]%
		dred Dataset". (Retrospective)					for ARI, all decreasing
							with age. Higher if no
							antiviral prophylaxis.
26. Pedroni	1 Apr - 27	Household members of laboratory-	57	245	PCR	ILI	36% overall.
et al. [42]	Jun	confirmed cases presenting to emergency					
		departments in Puerto Montt, Los La-					
		gos, Chile. (part Retrospective, part					
		Prospective)					
27. Peltola	Oct – Nov	Household members of six laboratory-	6	15	PCR	PCR	73[48,99]% overall.
et al. [43]		confirmed cases of H1N1 in children under					
		1.5 yrs presenting to a respiratory infection					
		cohort study clinic in Finland. (Prospec-					
		tive)					

28. Savage et al. [44]	24 Apr – 18 Jun 30 Apr – 9	Household members of laboratory- confirmed cases presenting to 7 public health units in Ontario, Canada. (Prospec- tive)	97	253	Lab	ILI or ARI	10.3[6.8,14.7]% for ILI, 20.2[15.4,25.6]% for ARI, decreasing with age. 30.2[12.6.52.2]% over-
et al. [45]	Jun	confirmed cases in urban households in Edmonton, Canada. (Prospective)	01	202			all.
30. Skowronski et al. [46]	27 May – 10 Jul	Household contacts of the first laboratory- confirmed case in households in Quebec City, Canada. Considered association be- tween 2008-9 trivalent vaccine and infec- tion during pandemic (H1N1) 2009. One of several studies carried out. (Prospective)	47	120	PCR	PCR, ILI or ARI	35% for PCR, 25.8% for ILI, and 60% for ARI.
31. Suess et al. [47]	Apr – Aug	All German households with a laboratory- confirmed case responding to Robert Koch Institute contact. (Restrospective)	36	83	PCR	PCR	18% overall. 26% of the 47 contacts not receiv- ing antiviral prophylaxis. No difference in SAR by age.
32. Tandale et al. [48]	Sept – Oct	Household contacts of laboratory- confirmed index cases in Pune, India. (Retrospective)	74	195	PCR	Sero	25.6[19.5,31.8]% over- all.
33. Teh et al. [49]	30 Apr – 31 Jul	Household contacts of laboratory- confirmed index cases and those with any ILI identified from microbiology records, Melbourne, Victoria, Australia. (Retrospective)	318 PCR / 818 ILI	1331 / 499	PCR or ILI	ILI	23.5% for ILI, 30.6% for PCR, decreasing with age.

34. van	18 May – 3	Household contacts of randomly selected	36	122	Lab	ARI	14.8[8.9, 22.3]% overall.
Gemert	Jun	confirmed index cases reported to Victorian					
et al. [50]		Department of Health, Australia, within					
		specified time period. (Retrospective)					
35. Vilella	19-27 Jun	Household contacts of a group of Span-	39 PCR	98 / 137	PCR or	PCR or	2.9% for 1° and 2° ARI,
et al. [51]		ish medical students reporting ARI/having	/ 62 ARI		ARI	ARI	1% for 1° and 2° PCR.
		laboratory-confirmed H1N1 following a trip					
		to the Dominican republic. (Prospective)					
36. This	5 May – 18	Laboratory-confirmed cases and their	424	1612	PCR	PCR, ILI	16.0[13.4,18.7]% for
study.	Jun	household contacts in Birmingham,				or ARI	PCR, 35.2[31.4,39.1]%
		England. (Retrospective)					for ILI, 51.9[47.5,56.4]%
							for ARI. ^{††}

Notes: *multiple publications from one datset share a row; **dates are 2009 unless otherwise stated; [†]'PCR' means polymerase chain reaction, 'ILI' means diagnosis on rigorous criteria, 'ARI' means diagnosis on wider symptomatic criteria, 'Lab' means laboratory techniques, 'Sero' means seroconversion; ^{††}CI in raw SARs calculated from a household-level bootstrap.

References

- 1. L. L. H. Lau, H. Nishiura, H. Kelly, D. K. M. Ip, G. M. Leung, and B. J. Cowling. Household transmission of 2009 pandemic influenza A(H1N1): a systematic review and meta-analysis. To appear in Epidemiology., 2012.
- 2. M. P. Girard, J. S. Tam, O. M. Assossou, and M. P. Kieny. The 2009 A (H1N1) influenza virus pandemic: A review. *Vaccine*, 28(31):4895–4902, Dec 2010.
- 3. P.-Y. Boëlle, S. Ansart, A. Cori, and A.-J. Valleron. Transmission parameters of the A/H1N1 (2009) influenza virus pandemic: a review. *Influenza and Other Respiratory Viruses*, 5(5): 306–316, Mar 2011.
- 4. C. Fraser, D. A. T. Cummings, D. Klinkenberg, D. S. Burke, and N. M. Ferguson. Influenza transmission in households during the 1918 pandemic. *American Journal of Epidemiology*, pages 1–10, Jul 2011.
- 5. B. Klick, G. M. Leung, and B. J. Cowling. Optimal design of studies of influenza transmission in households. I: Case-ascertained studies. *Epidemiology and Infection*, pages 1–9, Mar 2011.
- B. J. Cowling, K.-H. Chan, V. J. Fang, C. K. Y. Cheng, R. O. P. Fung, W. Wai, J. Sin, W. H. Seto, R. Yung, D. W. S. Chu, B. C. F. Chiu, P. W. Y. Lee, M. C. Chiu, H. C. Lee, T. M. Uyeki, P. M. Houck, J. S. M. Peiris, and G. M. Leung. Facemasks and hand hygiene to prevent influenza transmission in households: a cluster randomized trial. *Ann Intern Med*, 151 (7):437–46, Oct 2009.
- C. R. MacIntyre, S. Cauchemez, D. E. Dwyer, H. Seale, P. Cheung, G. Browne, M. Fasher, J. Wood, Z. Gao, R. Booy, and N. Ferguson. Face mask use and control of respiratory virus transmission in households. *Emerging Infectious Diseases*, 15(2):233–41, Feb 2009.
- 8. E. L. Larson, Y. hui Ferng, J. Wong-McLoughlin, S. Wang, M. Haber, and S. S. Morse. Impact of non-pharmaceutical interventions on URIs and influenza in crowded, urban households. *Public Health Rep*, 125(2):178–91, Jan 2010.
- J. M. Simmerman, P. Suntarattiwong, J. Levy, R. G. Jarman, S. Kaewchana, R. V. Gibbons, B. J. Cowling, W. Sanasuttipun, S. A. Maloney, T. M. Uyeki, L. Kamimoto, and T. Chotipitayasunondh. Findings from a household randomized controlled trial of hand washing and face masks to reduce influenza transmission in Bangkok, Thailand. *Influenza and Other Respiratory Viruses*, 5(4):256–267, Feb 2011.
- Y. Yang, J. D. Sugimoto, M. E. Halloran, N. E. Basta, D. L. Chao, L. Matrajt, G. Potter, E. Kenah, and I. M. Longini. The transmissibility and control of pandemic influenza A (H1N1) virus. *Science*, 326(5953):729–33, Oct 2009.
- S. Cauchemez, C. A. Donnelly, C. Reed, A. C. Ghani, C. Fraser, C. K. Kent, L. Finelli, and N. M. Ferguson. Household transmission of 2009 pandemic influenza A (H1N1) virus in the United States. *N Engl J Med*, 361(27):2619–27, Dec 2009.
- J. D. Sugimoto, N. N. Borse, M. L. Ta, L. J. Stockman, G. E. Fischer, Y. Yang, M. E. Halloran, I. M. Longini, and J. S. Duchin. The effect of age on transmission of 2009 pandemic influenza A (H1N1) in a camp and associated households. *Epidemiology*, 22(2):180–7, Mar 2011.
- A. Ghani, M. Baguelin, J. Griffin, S. Flasche, A. J. V. Hoek, S. Cauchemez, C. Donnelly, C. Robertson, M. White, J. Truscott, C. Fraser, T. Garske, P. White, S. Leach, I. Hall, H. Jenkins, N. Ferguson, and B. Cooper. The early transmission dynamics of H1N1pdm influenza in the United Kingdom. *PLoS Curr*, 2:RRN1130, Jun 2010.

- S. Cauchemez, A. Bhattarai, T. L. Marchbanks, R. P. Fagan, S. Ostroff, N. M. Ferguson, D. Swerdlow, S. V. Sodha, M. E. Moll, F. J. Angulo, R. Palekar, W. R. Archer, and L. Finelli. Role of social networks in shaping disease transmission during a community outbreak of 2009 H1N1 pandemic influenza. *Proceedings of the National Academy of Sciences*, 108(7):2825– 2830, Feb 2011.
- M. van Boven, T. Donker, M. V. D. Lubben, R. B. V. Gageldonk-Lafeber, D. E. T. Beest, M. Koopmans, A. Meijer, A. Timen, C. Swaan, A. Dalhuijsen, S. Hahné, A. V. D. Hoek, P. Teunis, M. A. B. V. D. Sande, J. Wallinga, and Y. Yang. Transmission of novel influenza A(H1N1) in households with post-exposure antiviral prophylaxis. *PLoS ONE*, 5(7):e11442, Jul 2010.
- B. Klick, H. Nishiura, S. Ng, V. J. Fang, G. M. Leung, J. S. Peiris, and B. J. Cowling. Transmissibility of seasonal and pandemic influenza in a cohort of households in Hong Kong in 2009. *Epidemiology*, 22(6):793–6, Nov 2011.
- L. Calatayud, S. Kurkela, P. E. Neave, A. Brock, S. Perkins, M. Zuckerman, M. Sudhanva, A. Bermingham, J. Ellis, R. Pebody, M. Catchpole, R. Heathcock, and H. Maguire. Pandemic (H1N1) 2009 virus outbreak in a school in London, April-May 2009: an observational study. *Epidemiology and Infection*, 138(2):183–91, Feb 2010.
- D. Carcione, C. Giele, L. S. Goggin, K. S. Kwan, D. W. Smith, G. K. Dowse, D. B. Mak, and P. Effler. Association between 2009 seasonal influenza vaccine and influenza-like illness during the 2009 pandemic: preliminary results of a large household transmission study in Western Australia. *Euro Surveill*, 15(28), Jan 2010.
- 19. D. Carcione, C. M. Giele, L. S. Goggin, K. S. Kwan, D. W. Smith, G. K. Dowse, D. B. Mak, and P. Effler. Secondary attack rate of pandemic influenza A(H1N1) 2009 in Western Australian households, 29 May-7 August 2009. *Euro Surveill*, 16(3), Jan 2011.
- 20. Centers for Disease Control and Prevention. Introduction and transmission of 2009 pandemic influenza A (H1N1) Virus–Kenya, June-July 2009. *MMWR Morbidity and Mortality Weekly Report*, 58(41):1143–6, Oct 2009.
- 21. L.-Y. Chang, W.-H. Chen, C.-Y. Lu, P.-L. Shao, T.-Y. Fan, A.-L. Cheng, and L.-M. Huang. Household transmission of pandemic (H1N1) 2009 virus, Taiwan. *Emerging Infectious Diseases*, 17(10):1928–31, Oct 2011.
- B. J. Cowling, K. H. Chan, V. J. Fang, L. L. H. Lau, H. C. So, R. O. P. Fung, E. S. K. Ma, A. S. K. Kwong, C.-W. Chan, W. W. S. Tsui, H.-Y. Ngai, D. W. S. Chu, P. W. Y. Lee, M.-C. Chiu, G. M. Leung, and J. S. M. Peiris. Comparative epidemiology of pandemic and seasonal influenza A in households. *N Engl J Med*, 362(23):2175–84, Jun 2010.
- 23. G. D. Serres, I. Rouleau, M. E. Hamelin, C. Quach, D. Skowronski, L. Flamand, N. Boulianne, Y. Li, J. Carbonneau, A. Bourgault, M. Couillard, H. Charest, and G. Boivin. Contagious period for pandemic (H1N1) 2009. *Emerging Infectious Diseases*, 16(5):783–8, May 2010.
- 24. T. J. Doyle and R. S. Hopkins. Low secondary transmission of 2009 pandemic influenza A (H1N1) in households following an outbreak at a summer camp: relationship to timing of exposure. *Epidemiology and Infection*, 139(01):45–51, Jan 2011.
- 25. A. M. France, M. Jackson, S. Schrag, M. Lynch, C. Zimmerman, M. Biggerstaff, and J. Hadler. Household transmission of 2009 influenza A (H1N1) virus after a school-based outbreak in New York City, April–May 2009. *The Journal of Infectious Diseases*, 201(7):984–992, Apr 2010.

- M. L. Jackson, A. M. France, K. Hancock, X. Lu, V. Veguilla, H. Sun, F. Liu, J. Hadler, B. H. Harcourt, D. H. Esposito, C. M. Zimmerman, J. M. Katz, A. M. Fry, and S. J. Schrag. Serologically confirmed household transmission of 2009 pandemic influenza A (H1N1) virus during the first pandemic wave–New York City, April-May 2009. *Clin Infect Dis*, 53(5):455– 462, Sep 2011.
- E. Goldstein, B. J. Cowling, J. J. O'hagan, L. Danon, V. J. Fang, A. Hagy, J. C. Miller, D. Reshef, J. Robins, P. Biedrzycki, and M. Lipsitch. Oseltamivir for treatment and prevention of pandemic influenza A/H1N1 virus infection in households, Milwaukee, 2009. *BMC infectious diseases*, 10(1):211, Jan 2010.
- 28. N. Komiya, Y. Gu, H. Kamiya, Y. Yahata, Y. Yasui, K. Taniguchi, and N. Okabe. Household transmission of pandemic 2009 influenza A (H1N1) virus in Osaka, Japan in May 2009. *J Infection*, 61(4):284–288, Oct 2010.
- 29. D. H. Lee, C. W. Kim, J.-H. Kim, J. S. Lee, M. K. Lee, J. C. Choi, B. W. Choi, S.-H. Choi, and J.-W. Chung. Risk factors for laboratory-confirmed household transmission of pandemic H1N1 2009 infection. *American Journal of Infection Control*, 38(10):e43–5, Dec 2010.
- 30. Y. H. Leung, M. P. Li, and S. K. Chuang. A school outbreak of pandemic (H1N1) 2009 infection: assessment of secondary household transmission and the protective role of Oseltamivir. *Epidemiology and Infection*, 139(01):41–44, Jan 2011.
- S.-L. Liu, Z.-R. Zhang, C. Wang, Y. Dong, L.-B. Cui, X.-H. Yang, Z. Sun, J. Wang, J. Chen, R.-J. Huang, F. Miao, B. Ruan, L. Xie, H.-X. He, and J. Deng. 2009 pandemic characteristics and controlling experiences of influenza H1N1 virus 1 year after the inception in Hangzhou, China. J Med Virol, 82(12):1985–95, Dec 2010.
- 32. C. Looker, K. Carville, K. Grant, H. Kelly, and J. Brown. Influenza A (H1N1) in Victoria, Australia: A community case series and analysis of household transmission. *PLoS ONE*, 5 (10):e13702, Oct 2010.
- 33. F. Loustalot, B. J. Silk, A. Gaither, T. Shim, M. Lamias, F. Dawood, O. W. Morgan, D. Fishbein, S. Guerra, J. R. Verani, S. A. Carlson, V. P. Fonseca, and S. J. Olsen. Household transmission of 2009 pandemic influenza A (H1N1) and nonpharmaceutical interventions among households of high school students in San Antonio, Texas. *Clin Infect Dis*, 52 Suppl 1:S146– 53, Jan 2011.
- 34. A. G. Mohamed, A. A. Binsaeed, H. Al-Habib, and H. Al-Saif. Communicability of H1N1 and seasonal influenza among household contacts of cases in large families. *Influenza and Other Respiratory Viruses*, Nov 2011. doi:10.1111/j.1750-2659.2011.00308.x.
- 35. O. W. Morgan, S. Parks, T. Shim, P. A. Blevins, P. M. Lucas, R. Sanchez, N. Walea, F. Loustalot, M. R. Duffy, M. J. Shim, S. Guerra, F. Guerra, G. Mills, J. Verani, B. Alsip, S. Lindstrom, B. Shu, S. Emery, A. L. Cohen, M. Menon, A. M. Fry, F. Dawood, V. P. Fonseca, and S. J. Olsen. Household transmission of pandemic (H1N1) 2009, San Antonio, Texas, USA, April-May 2009. *Emerging Infectious Diseases*, 16(4):631–7, Apr 2010.
- 36. H. Nishiura and H. Oshitani. Household transmission of influenza (H1N1-2009) in Japan: Agespecificity and reduction of household transmission risk by Zanamivir treatment. *J Int Med Res*, 39(2):619–28, Jan 2011.
- 37. H. Nishiura and H. Oshitani. Effects of vaccination against pandemic (H1N1) 2009 among Japanese children. *Emerging Infectious Diseases*, 17(4):746–7, Apr 2011.

- F. Odaira, H. Takahashi, T. Toyokawa, Y. Tsuchihashi, T. Kodama, Y. Yahata, T. Sunagawa, K. Taniguchi, and N. Okabe. Assessment of secondary attack rate and effectiveness of antiviral prophylaxis among household contacts in an influenza A(H1N1)v outbreak in Kobe, Japan, May-June 2009. *Euro Surveill*, 14(35), Jan 2009.
- 39. X. Pang, P. Yang, S. Li, L. Zhang, L. Tian, Y. Li, B. Liu, Y. Zhang, B. Liu, R. Huang, X. Li, and Q. Wang. Pandemic (H1N1) 2009 among quarantined close contacts, Beijing, People's Republic of China. *Emerging Infectious Diseases*, 17(10):1824–30, Oct 2011.
- J. Papenburg, M. Baz, M.-E. Hamelin, C. Rheaume, J. Carbonneau, M. Ouakki, I. Rouleau, I. Hardy, D. Skowronski, M. Roger, H. Charest, G. D. Serres, and G. Boivin. Household transmission of the 2009 pandemic a/h1n1 influenza virus: Elevated laboratory-confirmed secondary attack rates and evidence of asymptomatic infections. *Clinical Infectious Diseases*, 51:1033–1041(9), 1 November 2010. doi: doi:10.1086/656582.
- R. G. Pebody, R. Harris, G. Kafatos, M. Chamberland, C. Campbell, J. S. Nguyen-Van-Tam, E. McLean, N. Andrews, P. J. White, E. Wynne-Evans, J. Green, J. Ellis, T. Wreghitt, S. Bracebridge, C. Ihekweazu, I. Oliver, G. Smith, C. Hawkins, R. Salmon, B. Smyth, J. McMenamin, M. Zambon, N. Phin, and J. M. Watson. Use of antiviral drugs to reduce household transmission of pandemic (H1N1) 2009, United Kingdom. *Emerging Infectious Diseases*, 17(6):990–9, Jun 2011.
- E. Pedroni, M. Garcia, V. Espinola, A. Guerrero, C. Gonzalez, A. Olea, M. Calvo, B. Martorell, M. Winkler, M. Carrasco, J. Vergara, J. Ulloa, A. Carrazana, O. Mujica, J. Villarroel, M. Labrana, M. Vargas, P. Gonzalez, L. Caceres, C. Zamorano, R. Momberg, G. Munoz, J. Rocco, V. Bosque, A. Gallardo, J. Elgueta, and J. Vega. Outbreak of 2009 pandemic influenza A(H1N1), Los Lagos, Chile, April-June 2009. *Euro Surveillance*, 15(1), Jan 2010.
- 43. V. Peltola, T. Teros-Jaakkola, M. Rulli, L. Toivonen, E. Broberg, M. Waris, and J. Mertsola. Pandemic influenza a (H1N1) virus in households with young children. *Influenza and Other Respiratory Viruses*, Sep 2011. doi:10.1111/j.1750-2659.2011.00289.x.
- 44. R. Savage, M. Whelan, I. Johnson, E. Rea, M. Lafreniere, L. C. Rosella, F. Lam, T. Badiani, A.-L. Winter, D. J. Carr, C. Frenette, M. Horn, K. Dooling, M. Varia, A.-M. Holt, V. Sunil, C. Grift, E. Paget, M. King, J. Barbaro, and N. S. Crowcroft. Assessing secondary attack rates among household contacts at the beginning of the influenza A (H1N1) pandemic in Ontario, Canada, April-June 2009: A prospective, observational study. *BMC public health*, 11(1):234, Jan 2011.
- 45. C. Sikora, S. Fan, R. Golonka, D. Sturtevant, J. Gratrix, B. E. Lee, J. Jaipaul, and M. Johnson. Transmission of pandemic influenza A (H1N1) 2009 within households: Edmonton, Canada. *Journal of Clinical Virology*, 49(2):90–93, Oct 2010.
- D. M. Skowronski, G. D. Serres, N. S. Crowcroft, N. Z. Janjua, N. Boulianne, T. S. Hottes, L. C. Rosella, J. A. Dickinson, R. Gilca, P. Sethi, N. Ouhoummane, D. J. Willison, I. Rouleau, M. Petric, K. Fonseca, S. J. Drews, A. Rebbapragada, H. Charest, M.-E. Hamelin, G. Boivin, J. L. Gardy, Y. Li, T. L. Kwindt, D. M. Patrick, R. C. Brunham, and C. S. Team. Association between the 2008-09 seasonal influenza vaccine and pandemic H1N1 illness during Spring-Summer 2009: four observational studies from Canada. *PLoS Med*, 7(4):e1000258, Apr 2010.
- T. Suess, U. Buchholz, S. Dupke, R. Grunow, M. A. D. Heiden, A. Heider, B. Biere, B. Schweiger, W. Haas, and G. Krause. Shedding and transmission of novel influenza virus A/H1N1 infection in households–Germany, 2009. *American Journal of Epidemiology*, 171(11): 1157–1164, Jun 2010.

- 48. B. V. Tandale, S. D. Pawar, Y. K. Gurav, M. S. Chadha, S. S. Koratkar, V. N. Shelke, and A. C. Mishra. Seroepidemiology of pandemic influenza A (H1N1) 2009 virus infections in Pune, India. *BMC infectious diseases*, 10:255, Jan 2010.
- B. Teh, K. Olsen, J. Black, A. C. Cheng, C. Aboltins, K. Bull, P. D. R. Johnson, M. L. Grayson, and J. Torresi. Impact of swine influenza and quarantine measures on patients and households during the H1N1/09 pandemic. *Scandinavian Journal of Infectious Diseases*, Nov 2011. doi:10.3109/00365548.2011.631572.
- C. van Gemert, M. Hellard, E. S. McBryde, J. Fielding, T. Spelman, N. Higgins, R. Lester, H. Vally, and I. Bergeri. Intrahousehold transmission of pandemic (H1N1) 2009 virus, Victoria, Australia. *Emerging Infectious Diseases*, 17(9):1599–607, Sep 2011.
- A. Vilella, B. Serrano, M. A. Marcos, A. Serradesanferm, J. Mensa, E. Hayes, A. Anton, J. Rios, T. Pumarola, and A. Trilla. Pandemic influenza A(H1N1) outbreak among a group of medical students who traveled to the Dominican Republic. *Journal of Travel Medicine*, 19(1): 9–14, Dec 2011.