
Supplementary Information
Smieszek T, Salathé M. A low-cost method to assess the epidemiological importance of 
individuals in controlling infectious disease outbreaks.

Code and data availability 
Both the code and the data are publicly available.

Collection of contact and location data
A detailed description of the data collection is already  published elsewhere [1]. Here, we only 
recapitulate the most important facts and add information that goes beyond the scope of the 
previous publication.

On January  14, 2010, wireless sensor network motes were distributed to the population of an 
American high school, including students, teachers, and staff. Motes were placed in a thin 
plastic pouch attached to a lanyard and worn around the participants’ neck throughout the entire 
school day. We refer to motes worn by  the participants as mobile motes. 94% of the school 
population agreed to participate and activated the motes correctly  so that they  logged data. 
Motes were also placed at fixed locations throughout the school building to be able to track the 
location of the mobile motes over time. We refer to those fixed motes as stationary motes.  

Both mobile and stationary motes broadcast packages of data (including the motes’ IDs) at an 
interval of 20 seconds. The power of the signals was programmed to be much stronger for the 
stationary  motes (-11.0 dBm) than for the mobile motes (-16.9 dBm). The data packages were 
received and logged solely  by  mobile motes (Figure S1). Received mobile mote signals were 
filtered according to signal strength to make sure that only  face-to-face contacts of up to three 
meters distance were logged. We refer to such a contact as close proximity interaction (CPI). 

ID of sending mote
5 digits: stationary mote

3 digits: mobile mote

signal strength

global time

Fig. S1: Extract from raw data downloaded from a mobile mote.  
Mobile motes received and logged signals from other mobile (3 
digit ID, first column) or stationary (5 digit ID, first column) motes. 
Each row represents one signal from one particular mote at a 
particular time step. The signal strength of the received signal is 
given as a manufacturer-specific code that can be transformed into 
RSSI or dBm values (third column). One unit in the global time 
(fifth) column equals 20 seconds.

- 1 -



At a given global time t, a mobile mote can receive multiple signals (CPIs) stemming from 
different other mobile motes (Figure S1). A CPI is, by  definition, always mutual: If i had face-to-
face contact with j, then j also had face-to-face contact with i. Sometimes, only  one of the two 
motes that form a CPI detected the other mote’s signal. Thus, we had to make sure that for 
every arc from individuals i to individual j at time t, < i, j >, there is also an arc < j, i >. 

At a given global time t, a mobile mote can also receive multiple signals from stationary  motes. 
In an ideal situation, the strongest of all signals received from stationary  motes at time t would 
indicate the location of the individual that wore the mobile mote. However, real-world settings, 
such as the school where the data was collected, are rarely  ideal, and, hence, the collected 
location data is expected to be noisy. 

Identification of participant locations
There were several sources of noise and bias that affected signals received from stationary 
motes: (i) wireless local area network (WLAN) stations and other sources of electromagnetic 
waves that interfered with the signals from the motes; (ii) disadvantageous placements of motes 
that were oftentimes unavoidable because the stationary  motes had to be placed at secure 
places, e.g., on cabinets or bookshelves; (iii) uncontrollable refraction, reflection, and signal 
dampening caused by walls and objects.

In order to reduce the noise in the location data, we modified the data by  employing a very 
conservative approach (based on physical laws and additional knowledge on the operation of a 
school) where we assumed:

1) Individuals who are linked by  a CPI at a given global time t were typically  at the same 
location. In particular, if the location of one individual was a clearly  enclosed space of limited 
size (e.g., a classroom as opposed to a long hallway  or a cafeteria), it is physically  impossible 
that the other, linked individual was in a different room. 

2) The locations of individuals in a school are relatively  stable during short periods of time (i.e., 
few time steps). Hence, when individuals appeared to oscillate between rooms with a high 
frequency according to our data, we assumed this to be an error.

3) Most of the teaching at a school takes place in classes, where a clearly  defined group of 
individuals occupies one particular room in a building for a particular time during the day.  

Based on these three assumptions, we defined and applied a sequence of four algorithms that 
reduced the noise in our location data. A comparison of the so modified data with the school’s 
schedule on the deployment day indicated that the modified location data is a reasonably good 
representation of the school day (see section on the reconstruction of individual schedules). 

Algorithm 1: Weighted average signals
The aim of the first algorithm was to determine initial locations for all individuals of the 
population and all time steps that are more robust than relying on the strongest signal. To do 
this, we first identified the set of all other individuals I that were linked to a specific individual i by 
a CPI at a specific time step t0. Next, we calculated for each stationary mote that was detected 
at t0 by  at least one individual j ∈ I ∪ {i} the average detected signal strengths (in dBm) over all 
individuals in I ∪ {i}. We repeated this procedure for the two time steps preceding t0, t-2 and t-1, 
as well as for the two subsequent time steps, t1 and t2. The resulting five sets of mean signal 
strength values were used to compute weighted signal strength averages over the five time 
steps t-2, t-1, t0, t1, and t2. For the weighting, we used the following relative weights: w(t-2) = w(t2) = 
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1; w(t-1) = w(t1) = 2; w(t0) = 4. The stationary  mote with the highest weighted average signal 
strength determined the initial location of individual i at time t0.

The information at time t0 is usually  the most accurate predictor for the actual location at time t0. 
Therefore, the weight for t0 was the highest. However, if the data at preceding and subsequent 
time steps congruently  deviated from the data at t0, then that information was able to overrule 
the information at t0. 

Algorithm 2: Smoothing
The aim of the second algorithm was to smooth interrupted sequences of locations. To this end, 
we identified all AABA (A stands for one location and B for another) and all ABAA subsequences 
in the data and replace them with AAAA subsequences. We based the smoothing algorithm on 
AABA and ABAA instead of ABA to make sure that A is the locally  dominant location. Algorithms 
one and two improved the quality of the location data noticeably (Figure S2).

Algorithm 3: Consistent group locations 
The aim of the third algorithm was to detect clearly  defined and temporally  stable groups of 
individuals and to make their location records consistent. Location records are inconsistent 
when different individuals belonging to one group have different locations. 

First, we identified all pairs of stationary  motes that met the following requirements: (i) they were 
involved in inconsistencies, (ii) at least one mote was placed in a classroom, and (iii) none of the 
motes was placed in the lunch break areas of the school. The reason for the explicit inclusion of 
classrooms was that the attendants of a class form a clearly  defined group that exists for a 
prolonged time with typically a clear beginning and a clear end. The reasons for the exclusion of 
the lunch break areas were the open architecture of the schools’ lunch break area and that 
students, teachers, and staff members move freely in that space.

Second, we identified for each such pair of stationary  motes periods of time (at least 30 
minutes) when temporally  stable groups of individuals occupied the corresponding locations. 
We assumed that if (i) the total occupancy of both locations dropped below a certain threshold 
or (ii) the composition of the occupants changed substantially, the class period had ended. 

We operationalized conditions (i) and (ii) as follows:

We defined two sets of individuals I1 and I2 as

  and

,

where It is the set of individuals allocated to one of the two stationary motes at time step t. 

Algorithms 1 & 2

Strongest signal

Time

Fig. S2: An individual’s locations over time. The color of the areas in both the upper and the 
lower bar indicate a particular location. The lower bar is based on the raw location data, where 
the strongest location signal record determines the color of an area increment. The upper bar 
shows the location allocation after applying algorithms one and two.

I1 = It�2 [ It�1 [ It

I2 = It+1 [ It+2 [ It+3
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During a period, we expected the total occupancy of two adjacent rooms to be at least ten. If 

. 

was not true, we defined condition (i) to be fulfilled. 

We used the Jaccard index [2] to quantify the changes in the occupant composition. If 
|I1 \ I2|
|I1 [ I2|

� 0.5

was not true, we defined condition (ii) to be fulfilled. 

Continuous periods of time of at least 30 minutes duration when neither condition (i) nor 
condition (ii) was fulfilled were stored. Both the thresholds for condition (i) and (ii) are arbitrary, 
but reasonable. The time periods that were generated by this algorithm corresponded almost 
perfectly to the bell times of the school. 

Third, we defined networks of individuals for every  pair of stationary motes and every time 
period (as defined in step two) and identified their connected components. An individual was a 
node of such a network, if it was allocated to one of the two stationary  motes in more than half 
of the time steps of the period. Nodes of the network were linked, if they recorded CPIs between 
each other in more than half of the time steps of the time period.

We used the connected_components algorithm of the NetworkX 1.5 package for Python 2.7 
(https://networkx.lanl.gov) to break down the so defined network into components. We ignored 
components of less than five nodes. 

The fourth and final step depended on the number of components, n:

In the case of n = 1, we computed whether the nodes of this component were more often 
allocated to one stationary mote or to the other. Next, all entries of the inferior stationary  mote 
were overwritten with the dominant one.

In the case of n = 2, one component was allocated to one mote and the other component to the 
other mote. The component that was more dominantly  allocated to one of the motes triggered 
the concrete allocation of the two components.

In the case of n > 2, each component was allocated to the mote that was dominant for the 
respective component.

Algorithm 4: Consistent local neighborhoods
The aim of the fourth algorithm was to increase the consistency  between location records of 
individuals and their neighbors when they did not belong to a group (as defined in the 
description of algorithm three). We identified for every  individual i and every  time step t to whom 
the individual was linked by a CPI at that time step  t. We then checked whether a majority  of 
these immediate neighbors was allocated to one specific stationary  mote at t. If so and if the 
location of i differed, we adjusted the location of i. Algorithms three and four further increased 
the plausibility of the location data (Figure S3)

|I1 [ I2| � 10
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Properties of the modified location data
The extent of inconsistencies in the location data was substantially  reduced after the four algo-
rithms (described above) were applied (Figure S4). The total number of inconsistencies dropped 
to approximately  45% of the original value after applying algorithms one and two. All four 
algorithms decreased the number of inconsistencies to approximately  25% of the original value. 
During the periods the proportion of inconsistencies was typically  about 5% or below. While the 
number of inconsistencies increased during breaks and lunch time, this is not necessarily  a sign 
of a misrepresentation of reality since the school population spent these periods of time mostly 
in open areas where it is technically  possible that one individual stood closer to one stationary 
mote and the other, linked individual stood closer to another mote.

All algorithms

Algorithms 1 & 2

Time

Fig. S3: An individual’s locations over time. The color of the areas in both the upper and the 
lower bar indicate a particular location. The lower bar shows the location allocation after 
algorithms one and two were applied (see Figure S2). The upper bar shows the modified 
location allocation after all four algorithms were applied. 

Fig. S4: Total number of CPIs over time (black line) as well as number of CPIs for which 
the two involved individuals are inconsistent with respect to location. The red line shows 
the number of inconsistencies if the strongest signal is used to determine the location; the 
grey line shows the number of inconsistencies for the location information after algorithms 
one and two were applied; the blue line shows the number of inconsistencies after all four 
algorithms were applied.
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The modified location data corresponded well with the aggregated schedule of the school at the 
deployment day. This is further discussed in the subsequent section on the reconstruction of the 
schedules. 

Reconstruction of individual schedules
The school provided aggregated schedule information, which contained the following informa-
tion about each class taught at the school: (i) who taught the class, (ii) in which room the class 
was taught, (iii) the day and period of the class, and (iv) the number of students signed in.

With this information, the reconstruction of the individual schedules of the teachers was straight-
forward. The individual schedules of the students were reconstructed by combining aggregated 
schedule data and mote-based location data with the following algorithm:

1) The total number of students signed in to a class defined the (maximal) number of individuals 
that were to be assigned to the corresponding classroom. We refer to these places to be filled 
with individuals as empty slots.

2) Individuals were sorted from the highest to the lowest measured presence time in that class-
room during the class’ period. The empty slots were consecutively  filled with individuals from 
this sorted list. An individual was assigned to an empty slot, (i) if it was next on the sorted list, 
and (ii) if there was no other room in which the individual spent more time during the period. 
An individual was not assigned to the classroom but flagged for further consideration if 
condition (ii) was not fulfilled.

3) Finally, we looped through all classes that had remaining empty  slots and through all flagged 
individuals. If a flagged individual was not yet allocated to another, more dominant classroom, 
it was used to fill a remaining empty slot it fitted to.

With this algorithm, we were able to fill 84% of all empty  slots. 70% of all classes could be filled 
completely. The difference between the aggregated schedule information and the reconstructed 
individual schedules can probably  be explained to some extent by  the remaining noise in the 
empirical location data. However, it has also to be taken into consideration that 6%  of the school 
population did not participate in the study  and, thus, did not contribute to the reconstructed 
occupancy  data. Furthermore, 6.7% of all scheduled classes remained completely  empty. This 
indicates that - at least some of them - were probably canceled. 

- 6 -



Additional analyses not presented in the main text
Indicators versus average time of symptom onset 

Fig. S5: This figure is analogous to subfigures 1b and 2b. Here, the average time 
to the onset of symptoms, t , was chosen as the benchmark according to which 
all indicators are compared to the collocation indicator. Also shown is the optimal  
t  relative to the collocation indicator. 
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Sensitivity analysis for the contact duration cut-off of the degree indicator

Fig. S6: This figure is analogous to subfigures 1b and 2b. It compares the 
performance (2nd benchmark) of the collocation indicator relative to several 
variations of the degree indicator: (i) the degree of the entire network, and the 
degrees of subnetworks that include only contacts with a duration of more than (ii) 
5 minutes, (iii) 10 minutes, (iv) 15 minutes, (v) 20 minutes. 
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Role of individuals versus their epidemiological importance

Fig. S7: Scatterplot of the individuals’ collocation indicator values versus their 
probability of becoming infected during an outbreak. The color code signifies the 
role of each individual at the school.

Fig. S8: Scatterplot of the individuals’ collocation indicator values versus the ratio 
t Pi . The ordinate axis is logarithmic. The color code signifies the role of each 
individual at the school.
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Distributions of and relationships between the indicators

Fig. S9: The scatterplot matrix shows the relationships between all five indicators 
used in the paper. The matrix diagonal contains density plots of all indicators.   
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Collocation indicator versus the individuals’ impact as index case

References
1.! Salathé M, Kazandjieva M, Lee JW, Levis P, Feldman MW, et al. (2010) A high-resolution 

human contact network for infectious disease transmission. Proc Natl Acad Sci U S A 107: 
22020–22025.

2.! Jaccard P (1901) Étude comparative de la distribution florale dans une portion des Alpes et 
des Jura. Bull Soc Vaudoise Sci Nat 37: 547–579.

Fig. S10: Scatterplot of the individuals’ collocation indicator values versus the 
number of infections they induced in those 100 simulation runs for which the 
respective individual was the index case.
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